Sparse matrix optimization problems in
computational color imaging

. I PENNS.TIQTE
SleALe @
Information Processing and Algorithms Laboratory U mama h esh S r| n |Va S

iPAL Group Meeting

September 24, 2010



What is a sparse matrix?

@ A matrix with significantly more number of O's than non-zero
elements

@ In the words of J. H. Wilkinson, “... any matrix with enough zeros
that it pays to take advantage of them”

@ Structure lends itself to special techniques which improve
computational efficiency: time and storage

Examples: diagonal matrix (special case: identity matrix), band
matrix

@ Scenarios where sparse matrices appear: computational fluid
dynamics (solution to partial differential equations), robotics,
financial modeling, networks, computational color imaging
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Examples from computational color imaging

@ Color look-up-table design via joint optimization of node locations
and output values?

@ Image spatial resolution enhancement via multiple image captures?
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Brief digression: Optimization theory

@ Consider an optimization problem in standard form:

minimize  fo(x)

subject to  f;(x) <0,i=1,2,...,m (1)
hi(x)=0,i=1,2,...,p
e Domain D =" ,dom f; "!_, dom h; C R".
o Lagrangian L : R® x R™ x RP — R
P
L(x,A,v) )+ ZA fi(x) + > vihi(x). (2)
i=1
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Dual function

@ Lagrange dual function g : R™ x RP — R
m P
gAv) = >:27f3 <fo(x) + ; Aifi(x) + ; Vihi(x)> N E)

@ g is always concave in A\, v.

o A useful property:
g\, v) <p*, where p* = ing{fo(x)}. (4)

@ For convex optimization problems, solving Eq. (1) is equivalent to
the following optimization problem:

maximize  g(\,v) (5)
subject to A > 0.
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Quadratic program (QP)

minimize %XTPX—I— q'x+r
subjectto Gx =<h (6)
Ax =D,

where P is a n X n symmetric, positive semidefinite matrix,
G e R™ " A € RP*™,
o Objective function is (convex) quadratic

@ Equality and inequality constraint functions are affine
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Example 1: Color look-up-table design

Given: A training set of multi-dimensional color inputs and their “true”
transformed values: S = {(x;,4:)},i1=1,2,...,K,x; e R* y; € R.

Choose look-up-table nodes "¢ = {x?d},j =1,...,M and
corresponding output values y?d which minimize the following error

function:
C"Ly™) = [ly" = Wyna y™|?. (7)

@ Weight matrix W,.a induced by node locations X"

e For fixed y™?, cost function is convex in W na.
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Weight matrix optimization

minimize ||y’ — W na.y"? |2

subject to wle; =0,i=1,2,...,K (8)
wi;>0i=1,2.. . Tj=12. .M
WXnd.]. - 1

Interpretation of constraints:

e w; is the i-th row of W, 4, €; is a membership vector of zeros and
ones. The membership constraint fixes the locations of the nodes
with non-zero weights.

@ w;; > 0: non-negativity of individual matrix elements, since
interpolation weights are non-negative..

@ Sum of elements in each row of W, na is 1, since it is an
interpolation matrix.

W, na is a sparse matrix.
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Formulation as a QP

argmin [y = Wy™||* = argmin ((y"" — Wy") (y"" — Wy"?))
= arg H‘l}é,n ((ynd)TWTWynd _ 2(yt'r')TW(ynd))

Let Y := y"d(y"¥)T and w! denote the i-th row of W. Then,

(ynd>TWTWynd = ¢tr (( nd)TWTWynd) ZtT(Wy"d(ynd)TWT)

r(WYWT) = Zw Yw,

= vec(WH)T (Im®Y)vec(WT)
= vec(WHTYvec(WT),

where vec(-) is the vectorizing operator, I, is the m x m identity matrix,
and ® represents the Kronecker product.
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Formulation as a QP (contd.)

Similarly,
"MWy = tr((y") Wy™) = tr(Wy"(y")")

= tr((y™(y")")TWT) = vec(y"!(y"")")" vec(WT).
With z := vec(WT) and ¢ := —2vec(y™(y*")T), the original cost

function becomes _
argminz’ Yz + ¢’ z. (9)
z

e Y positive semidefinite, I,,, positive definite = Y is positive
semidefinite (Kronecker product preserves positive definiteness).

@ Cost function is quadratic in z.
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What about the constraints?

e Membership constraint: Let 0 € RM denote the vector with all
zeros. Define E € REXEM gch that

4 NG
L R (10)
o of ... of €L
wie; =0,i=1,2,...,K < Ez = 0(c RF). (11)
@ Non-negativity:
w; j >0z = 0(e REM), (12)
e Interpolation constraint: Let 1 € RM denote the vector with all
ones. Define F € REXKM gych that
17 oT o ... of
T 1T oT ... T
S D (13)
o of ... of 17
W.1 = 14 Fz =1(c R¥). (14)
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Complete optimization problem

minimize z7Yz+cTz

subject to Ez =0

z>-0
Fz =1
where

o z = vec(WT)

o Y =1, ® (y"(y")")

o c=—2vec(y™(y")")

o E € REXKM jg defined in Eq. (10)

o F € REXKEM g defined in Eq. (13)

@ K is the number of training points.
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Example 2: Spatial resolution enhancement

Common Imaging System

Blurred, Noisy,

Bgyironment Aliased LR Image

Optical
Distortion

Figure: Digital image acquisition system®.
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Model of the forward imaging process

v =DBTyx+n,, 1<k<K (16)
where
@ x € R" is the unknown high-resolution image
Vi € R™ (m < n) represents the k-th low-resolution image
T € R™™™ is the k-th geometric warping matrix
B € R"*™ describes camera optical blur

D € R™*™ is a downsampling matrix of 1s and 0Os

ng; € R™ is the noise vector that corrupts yy.
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Final optimization problem

minimize  Y.r_, |lyx — DBTyx|, + Ap(x)

subjectto 0<x<1
0<DBT.,x<1, 1<k<K
T,1=1, 1
B1=1
tZmp, =0, 1<i<n, 1<k<K
bie; =0, 1<i<n

A
oyl
IA
=

D, B and T}, are sparse matrices.
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Open problems

@ Dual function analysis for the optimization in Example 1, i.e.,
solution to Eq. (5)

@ Does there exist a closed-form solution to the optimization
problems?
e If not, can a closed-form solution be obtained by dropping any of the
constraints?
o In that case, will the resulting solution be physically meaningful?

@ How can the sparse matrix optimization be performed more
efficiently?

09/24/2010 iPAL Group Meeting



