Sparse matrix optimization problems in computational color imaging

iPAL Group Meeting

September 24, 2010

What is a sparse matrix?

- A matrix with significantly more number of 0 's than non-zero elements
- In the words of J. H. Wilkinson, ". . . any matrix with enough zeros that it pays to take advantage of them"
- Structure lends itself to special techniques which improve computational efficiency: time and storage
- Examples: diagonal matrix (special case: identity matrix), band matrix
- Scenarios where sparse matrices appear: computational fluid dynamics (solution to partial differential equations), robotics, financial modeling, networks, computational color imaging

Examples from computational color imaging

(1) Color look-up-table design via joint optimization of node locations and output values ${ }^{1}$
(2) Image spatial resolution enhancement via multiple image captures ${ }^{2}$

[^0]

Brief digression: Optimization theory

- Consider an optimization problem in standard form:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \tag{1}\\
& h_{i}(\mathbf{x})=0, i=1,2, \ldots, p
\end{array}
$$

- Domain $\mathcal{D}=\bigcap_{i=0}^{m}$ dom $f_{i} \cap \bigcap_{i=1}^{p}$ dom $h_{i} \subset \mathbb{R}^{n}$.
- Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \mapsto \mathbb{R}$

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})=f_{0}(\mathbf{x})+\sum_{i=0}^{m} \lambda_{i} f_{i}(\mathbf{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}) . \tag{2}
\end{equation*}
$$

Dual function

- Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{p} \mapsto \mathbb{R}$

$$
\begin{equation*}
g(\boldsymbol{\lambda}, \boldsymbol{\nu})=\inf _{\mathbf{x} \in \mathcal{D}}\left(f_{0}(\mathbf{x})+\sum_{i=0}^{m} \lambda_{i} f_{i}(\mathbf{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x})\right) . \tag{3}
\end{equation*}
$$

- g is always concave in $\boldsymbol{\lambda}, \boldsymbol{\nu}$.
- A useful property:

$$
\begin{equation*}
g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq p^{*}, \text { where } p^{*}=\inf _{\mathbf{x} \in \mathcal{D}}\left\{f_{0}(\mathbf{x})\right\} \tag{4}
\end{equation*}
$$

- For convex optimization problems, solving Eq. (1) is equivalent to the following optimization problem:

$$
\begin{array}{ll}
\text { maximize } & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \tag{5}\\
\text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}
\end{array}
$$

Quadratic program (QP)

$$
\begin{array}{ll}
\underset{\operatorname{sinimize}}{\operatorname{mubject}} & \frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+\mathbf{r} \\
& \mathbf{G x} \preceq \mathbf{h} \tag{6}\\
& \mathbf{A x}=\mathbf{b},
\end{array}
$$

where \mathbf{P} is a $n \times n$ symmetric, positive semidefinite matrix, $\mathbf{G} \in \mathbb{R}^{m \times n}, \mathbf{A} \in \mathbb{R}^{p \times n}$.

- Objective function is (convex) quadratic
- Equality and inequality constraint functions are affine

Example 1: Color look-up-table design

Given: A training set of multi-dimensional color inputs and their "true" transformed values: $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, i=1,2, \ldots, K, \mathbf{x}_{i} \in \mathbb{R}^{n}, y_{i} \in \mathbb{R}$.
Choose look-up-table nodes $\chi^{n d}=\left\{\mathbf{x}_{j}^{n d}\right\}, j=1, \ldots, M$ and corresponding output values $y_{j}^{\text {nd }}$ which minimize the following error function:

$$
\begin{equation*}
\mathcal{C}\left(\chi^{n d}, \mathbf{y}^{n d}\right)=\left\|\mathbf{y}^{t r}-\mathbf{W}_{\chi^{n d}} \cdot \mathbf{y}^{n d}\right\|^{2} . \tag{7}
\end{equation*}
$$

- Weight matrix $\mathbf{W}_{\chi^{n d}}$ induced by node locations $\chi^{\text {nd }}$.
- For fixed $\mathbf{y}^{n d}$, cost function is convex in $\mathbf{W}_{\chi^{n d}}$.

Weight matrix optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|\mathbf{y}^{t r}-\mathbf{W}_{\chi^{n d}} \cdot \mathbf{y}^{n d^{*}}\right\|^{2} \\
\text { subject to } & \mathbf{w}_{i}^{T} \mathbf{e}_{i}=0, i=1,2, \ldots, K \tag{8}\\
& w_{i, j} \geq 0, i=1,2, \ldots, T, j=1,2, \ldots, M \\
& \mathbf{W}_{\chi^{n d}} \cdot \mathbf{1}=\mathbf{1}
\end{array}
$$

Interpretation of constraints:

- \mathbf{w}_{i} is the i-th row of $\mathbf{W}_{\chi^{n d}}, \mathbf{e}_{i}$ is a membership vector of zeros and ones. The membership constraint fixes the locations of the nodes with non-zero weights.
- $w_{i, j} \geq 0$: non-negativity of individual matrix elements, since interpolation weights are non-negative..
- Sum of elements in each row of $\mathbf{W}_{\chi^{n d}}$ is 1 , since it is an interpolation matrix.
$\mathbf{W}_{\chi^{n d}}$ is a sparse matrix.

Formulation as a QP

$$
\begin{aligned}
\arg \min _{\mathbf{W}}\left\|\mathbf{y}^{t r}-\mathbf{W} \mathbf{y}^{n d}\right\|^{2} & =\arg \min _{\mathbf{W}}\left(\left(\mathbf{y}^{t r}-\mathbf{W} \mathbf{y}^{n d}\right)^{T}\left(\mathbf{y}^{t r}-\mathbf{W} \mathbf{y}^{n d}\right)\right) \\
& =\arg \min _{\mathbf{W}}\left(\left(\mathbf{y}^{n d}\right)^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{y}^{n d}-2\left(\mathbf{y}^{t r}\right)^{T} \mathbf{W}\left(\mathbf{y}^{n d}\right)\right)
\end{aligned}
$$

Let $\mathbf{Y}:=\mathbf{y}^{n d}\left(\mathbf{y}^{n d}\right)^{T}$ and \mathbf{w}_{i}^{T} denote the i-th row of \mathbf{W}. Then,

$$
\begin{aligned}
\left(\mathbf{y}^{n d}\right)^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{y}^{n d} & =\operatorname{tr}\left(\left(\mathbf{y}^{n d}\right)^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{y}^{n d}\right)=\operatorname{tr}\left(\mathbf{W} \mathbf{y}^{n d}\left(\mathbf{y}^{n d}\right)^{T} \mathbf{W}^{T}\right) \\
& =\operatorname{tr}\left(\mathbf{W} \mathbf{Y} \mathbf{W}^{T}\right)=\sum_{i=1}^{K} \mathbf{w}_{i}^{T} \mathbf{Y} \mathbf{w}_{i} \\
& =\operatorname{vec}\left(\mathbf{W}^{T}\right)^{T}\left(\mathbf{I}_{m} \otimes \mathbf{Y}\right) \operatorname{vec}\left(\mathbf{W}^{T}\right) \\
& =\operatorname{vec}\left(\mathbf{W}^{T}\right)^{T} \tilde{\mathbf{Y}} \operatorname{vec}\left(\mathbf{W}^{T}\right),
\end{aligned}
$$

where $\operatorname{vec}(\cdot)$ is the vectorizing operator, \mathbf{I}_{m} is the $m \times m$ identity matrix, and \otimes represents the Kronecker product.

Formulation as a QP (contd.)

Similarly,

$$
\begin{aligned}
\left(\mathbf{y}^{t r}\right)^{T} \mathbf{W} \mathbf{y}^{n d} & =\operatorname{tr}\left(\left(\mathbf{y}^{t r}\right)^{T} \mathbf{W} \mathbf{y}^{n d}\right)=\operatorname{tr}\left(\mathbf{W} \mathbf{y}^{n d}\left(\mathbf{y}^{t r}\right)^{T}\right) \\
& =\operatorname{tr}\left(\left(\mathbf{y}^{n d}\left(\mathbf{y}^{t r}\right)^{T}\right)^{T} \mathbf{W}^{T}\right)=\operatorname{vec}\left(\mathbf{y}^{n d}\left(\mathbf{y}^{t r}\right)^{T}\right)^{T} \operatorname{vec}\left(\mathbf{W}^{T}\right) .
\end{aligned}
$$

With $\mathbf{z}:=\operatorname{vec}\left(\mathbf{W}^{T}\right)$ and $\mathbf{c}:=-2 \operatorname{vec}\left(\mathbf{y}^{n d}\left(\mathbf{y}^{t r}\right)^{T}\right)$, the original cost function becomes

$$
\begin{equation*}
\arg \min _{\mathbf{z}} \mathbf{z}^{T} \tilde{\mathbf{Y}} \mathbf{z}+\mathbf{c}^{T} \mathbf{z} \tag{9}
\end{equation*}
$$

- \mathbf{Y} positive semidefinite, \mathbf{I}_{m} positive definite $\Rightarrow \tilde{\mathbf{Y}}$ is positive semidefinite (Kronecker product preserves positive definiteness).
- Cost function is quadratic in \mathbf{z}.

What about the constraints?

- Membership constraint: Let $\mathbf{0} \in \mathbb{R}^{M}$ denote the vector with all zeros. Define $\mathbf{E} \in \mathbb{R}^{K \times K M}$ such that

$$
\begin{align*}
\mathbf{E} & =\left[\begin{array}{ccccc}
\mathbf{e}_{1}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \mathbf{e}_{2}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} & \mathbf{e}_{K}^{T}
\end{array}\right] \tag{10}\\
\mathbf{w}_{i}^{T} \mathbf{e}_{i} & =0, i=1,2, \ldots, K \Leftrightarrow \mathbf{E z}=\mathbf{0}\left(\in \mathbb{R}^{K}\right) . \tag{11}
\end{align*}
$$

- Non-negativity:

$$
\begin{equation*}
w_{i, j} \geq 0 \Leftrightarrow \mathbf{z} \succeq \mathbf{0}\left(\in \mathbb{R}^{K M}\right) \tag{12}
\end{equation*}
$$

- Interpolation constraint: Let $\mathbf{1} \in \mathbb{R}^{M}$ denote the vector with all ones. Define $\mathbf{F} \in \mathbb{R}^{K \times K M}$ such that

$$
\begin{gather*}
\mathbf{F}=\left[\begin{array}{ccccc}
\mathbf{1}^{T} & \mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\mathbf{0}^{T} & \mathbf{1}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\mathbf{0}^{T} & \mathbf{0}^{T} & \cdots & \mathbf{0}^{T} & \mathbf{1}^{T}
\end{array}\right] \tag{13}\\
\mathbf{W} \cdot \mathbf{1}=\mathbf{1} \Leftrightarrow \mathbf{F z}=\mathbf{1}\left(\in \mathbb{R}^{K}\right) . \tag{14}
\end{gather*}
$$

Complete optimization problem

$$
\begin{array}{cl}
\operatorname{minimize} & \mathbf{z}^{T} \tilde{\mathbf{Y}} \mathbf{z}+\mathbf{c}^{T} \mathbf{z} \\
\text { subject to } & \mathbf{E z}=\mathbf{0} \tag{15}\\
& \mathbf{z} \succeq \mathbf{0} \\
& \mathbf{F z}=\mathbf{1}
\end{array}
$$

where

- $\mathbf{z}=\operatorname{vec}\left(\mathbf{W}^{T}\right)$
- $\tilde{\mathbf{Y}}=\mathbf{I}_{m} \otimes\left(\mathbf{y}^{n d}\left(\mathbf{y}^{n d}\right)^{T}\right)$
- $\mathbf{c}=-2 v e c\left(\mathbf{y}^{n d}\left(\mathbf{y}^{t r}\right)^{T}\right)$
- $\mathbf{E} \in \mathbb{R}^{K \times K M}$ is defined in Eq. (10)
- $\mathbf{F} \in \mathbb{R}^{K \times K M}$ is defined in Eq. (13)
- K is the number of training points.

Example 2: Spatial resolution enhancement

Figure: Digital image acquisition system ${ }^{3}$.

[^1]

Model of the forward imaging process

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{D B T}_{k} \mathbf{x}+\mathbf{n}_{k}, \quad 1 \leq k \leq K \tag{16}
\end{equation*}
$$

where

- $\mathrm{x} \in \mathbb{R}^{n}$ is the unknown high-resolution image
- $\mathbf{y}_{k} \in \mathbb{R}^{m}(m<n)$ represents the k-th low-resolution image
- $\mathbf{T}_{k} \in \mathbb{R}^{n \times n}$ is the k-th geometric warping matrix
- $\mathbf{B} \in \mathbb{R}^{n \times n}$ describes camera optical blur
- $\mathbf{D} \in \mathbb{R}^{m \times n}$ is a downsampling matrix of $1 s$ and $0 s$
- $\mathbf{n}_{k} \in \mathbb{R}^{m}$ is the noise vector that corrupts \mathbf{y}_{k}.

Final optimization problem

$$
\begin{array}{ll}
\text { minimize } & \sum_{k=1}^{K}\left\|\mathbf{y}_{k}-\mathbf{D B T}_{k} \mathbf{x}\right\|_{p}+\lambda \rho(\mathbf{x}) \\
\text { subject to } & \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
& \mathbf{0} \leq \mathbf{D B} \mathbf{T}_{k} \mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K \tag{17}\\
& \mathbf{T}_{k .1}=\mathbf{1}, \quad 1 \leq k \leq K \\
& \mathbf{B . 1}=\mathbf{1} \\
& \mathbf{t}_{k, i}^{T} \mathbf{m}_{k, i}=0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K \\
& \mathbf{b}_{i}^{T} \mathbf{e}_{i}=0, \quad 1 \leq i \leq n
\end{array}
$$

\mathbf{D}, \mathbf{B} and \mathbf{T}_{k} are sparse matrices.

Open problems

- Dual function analysis for the optimization in Example 1, i.e., solution to Eq. (5)
- Does there exist a closed-form solution to the optimization problems?
- If not, can a closed-form solution be obtained by dropping any of the constraints?
- In that case, will the resulting solution be physically meaningful?
- How can the sparse matrix optimization be performed more efficiently?

[^0]: $1_{\text {Monga and Bala, ICASSP } 2010}$
 ${ }^{2}$ Monga and Srinivas, Invited paper, ASILOMAR Conference 2010
 09/24/2010
 iPAL Group Meeting

[^1]: ${ }^{3}$ Park et al., IEEE Signal Processing Magazine, 2003
 09/24/2010
 iPAL Group Meeting

