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What is a sparse matrix?

A matrix with significantly more number of 0’s than non-zero
elements

In the words of J. H. Wilkinson, “. . . any matrix with enough zeros
that it pays to take advantage of them”

Structure lends itself to special techniques which improve
computational efficiency: time and storage

Examples: diagonal matrix (special case: identity matrix), band
matrix

Scenarios where sparse matrices appear: computational fluid
dynamics (solution to partial differential equations), robotics,
financial modeling, networks, computational color imaging
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Examples from computational color imaging

1 Color look-up-table design via joint optimization of node locations
and output values1

2 Image spatial resolution enhancement via multiple image captures2

1
Monga and Bala, ICASSP 2010

2
Monga and Srinivas, Invited paper, ASILOMAR Conference 2010
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Brief digression: Optimization theory

Consider an optimization problem in standard form:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p.
(1)

Domain D =
⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi ⊂ Rn.

Lagrangian L : Rn × Rm × Rp 7→ R

L(x,λ,ν) = f0(x) +

m∑
i=0

λifi(x) +

p∑
i=1

νihi(x). (2)

09/24/2010 iPAL Group Meeting 4



Dual function

Lagrange dual function g : Rm × Rp 7→ R

g(λ,ν) = inf
x∈D

(
f0(x) +

m∑
i=0

λifi(x) +

p∑
i=1

νihi(x)

)
. (3)

g is always concave in λ,ν.

A useful property:

g(λ,ν) ≤ p∗, where p∗ = inf
x∈D
{f0(x)}. (4)

For convex optimization problems, solving Eq. (1) is equivalent to
the following optimization problem:

maximize g(λ,ν)
subject to λ � 0.

(5)
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Quadratic program (QP)

minimize 1
2x

TPx+ qTx+ r
subject to Gx � h

Ax = b,
(6)

where P is a n× n symmetric, positive semidefinite matrix,
G ∈ Rm×n,A ∈ Rp×n.

Objective function is (convex) quadratic

Equality and inequality constraint functions are affine
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Example 1: Color look-up-table design

Given: A training set of multi-dimensional color inputs and their “true”
transformed values: S = {(xi, yi)}, i = 1, 2, . . . ,K,xi ∈ Rn, yi ∈ R.

Choose look-up-table nodes χnd = {xndj }, j = 1, . . . ,M and

corresponding output values yndj which minimize the following error
function:

C(χnd,ynd) = ‖ytr −Wχnd .ynd‖2. (7)

Weight matrix Wχnd induced by node locations χnd.

For fixed ynd, cost function is convex in Wχnd .
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Weight matrix optimization

minimize ‖ytr −Wχnd .ynd
∗‖2

subject to wT
i ei = 0, i = 1, 2, . . . ,K

wi,j ≥ 0, i = 1, 2, . . . , T, j = 1, 2, . . . ,M
Wχnd .1 = 1.

(8)

Interpretation of constraints:

wi is the i-th row of Wχnd , ei is a membership vector of zeros and
ones. The membership constraint fixes the locations of the nodes
with non-zero weights.

wi,j ≥ 0: non-negativity of individual matrix elements, since
interpolation weights are non-negative..

Sum of elements in each row of Wχnd is 1, since it is an
interpolation matrix.

Wχnd is a sparse matrix.
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Formulation as a QP

argmin
W
‖ytr −Wynd‖2 = argmin

W

(
(ytr −Wynd)T (ytr −Wynd)

)
= argmin

W

(
(ynd)TWTWynd − 2(ytr)TW(ynd)

)
Let Y := ynd(ynd)T and wT

i denote the i-th row of W. Then,

(ynd)TWTWynd = tr((ynd)TWTWynd) = tr(Wynd(ynd)TWT )

= tr(WYWT ) =

K∑
i=1

wT
i Ywi

= vec(WT )T (Im ⊗Y)vec(WT )

= vec(WT )T Ỹvec(WT ),

where vec(·) is the vectorizing operator, Im is the m×m identity matrix,
and ⊗ represents the Kronecker product.
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Formulation as a QP (contd.)

Similarly,

(ytr)TWynd = tr((ytr)TWynd) = tr(Wynd(ytr)T )

= tr((ynd(ytr)T )TWT ) = vec(ynd(ytr)T )T vec(WT ).

With z := vec(WT ) and c := −2vec(ynd(ytr)T ), the original cost
function becomes

argmin
z

zT Ỹz+ cT z. (9)

Y positive semidefinite, Im positive definite ⇒ Ỹ is positive
semidefinite (Kronecker product preserves positive definiteness).

Cost function is quadratic in z.
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What about the constraints?
Membership constraint: Let 0 ∈ RM denote the vector with all
zeros. Define E ∈ RK×KM such that

E =


eT1 0T 0T · · · 0T

0T eT2 0T · · · 0T

· · · · · · · · · · · · · · ·
0T 0T · · · 0T eTK

 (10)

wT
i ei = 0, i = 1, 2, . . . ,K ⇔ Ez = 0(∈ RK). (11)

Non-negativity:
wi,j ≥ 0⇔ z � 0(∈ RKM ). (12)

Interpolation constraint: Let 1 ∈ RM denote the vector with all
ones. Define F ∈ RK×KM such that

F =


1T 0T 0T · · · 0T

0T 1T 0T · · · 0T

· · · · · · · · · · · · · · ·
0T 0T · · · 0T 1T

 (13)

W.1 = 1⇔ Fz = 1(∈ RK). (14)
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Complete optimization problem

minimize zT Ỹz+ cT z

subject to Ez = 0
z � 0
Fz = 1

(15)

where

z = vec(WT )

Ỹ = Im ⊗ (ynd(ynd)T )

c = −2vec(ynd(ytr)T )
E ∈ RK×KM is defined in Eq. (10)

F ∈ RK×KM is defined in Eq. (13)

K is the number of training points.

09/24/2010 iPAL Group Meeting 12



Example 2: Spatial resolution enhancement

Figure: Digital image acquisition system3.

3
Park et al., IEEE Signal Processing Magazine, 2003
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Model of the forward imaging process

yk = DBTkx+ nk, 1 ≤ k ≤ K (16)

where

x ∈ Rn is the unknown high-resolution image

yk ∈ Rm (m < n) represents the k-th low-resolution image

Tk ∈ Rn×n is the k-th geometric warping matrix

B ∈ Rn×n describes camera optical blur

D ∈ Rm×n is a downsampling matrix of 1s and 0s

nk ∈ Rm is the noise vector that corrupts yk.
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Final optimization problem

minimize
∑K
k=1 ‖yk −DBTkx‖p + λρ(x)

subject to 0 ≤ x ≤ 1
0 ≤ DBTkx ≤ 1, 1 ≤ k ≤ K
Tk.1 = 1, 1 ≤ k ≤ K
B.1 = 1
tTk,imk,i = 0, 1 ≤ i ≤ n, 1 ≤ k ≤ K
bTi ei = 0, 1 ≤ i ≤ n

(17)

D,B and Tk are sparse matrices.
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Open problems

Dual function analysis for the optimization in Example 1, i.e.,
solution to Eq. (5)

Does there exist a closed-form solution to the optimization
problems?

If not, can a closed-form solution be obtained by dropping any of the
constraints?
In that case, will the resulting solution be physically meaningful?

How can the sparse matrix optimization be performed more
efficiently?
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