Sparse matrix optimization problems in computational color imaging

Umamahesh Srinivas

iPAL Group Meeting

September 24, 2010

What is a sparse matrix?

- A matrix with significantly more number of 0's than non-zero elements
- In the words of J. H. Wilkinson, "... any matrix with enough zeros that it pays to take advantage of them"
- Structure lends itself to special techniques which improve computational efficiency: time and storage
- Examples: diagonal matrix (special case: identity matrix), band matrix
- Scenarios where sparse matrices appear: computational fluid dynamics (solution to partial differential equations), robotics, financial modeling, networks, computational color imaging

Examples from computational color imaging

- Color look-up-table design via joint optimization of node locations and output values¹
- Image spatial resolution enhancement via multiple image captures²

Monga and Bala, ICASSP 2010

²Monga and Srinivas, Invited paper, ASILOMAR Conference 2010

Brief digression: Optimization theory

• Consider an optimization problem in standard form:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0, i = 1, 2, \dots, p.$ (1)

- Domain $\mathcal{D} = \bigcap_{i=0}^m \operatorname{dom} f_i \cap \bigcap_{i=1}^p \operatorname{dom} h_i \subset \mathbb{R}^n$.
- Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=0}^{m} \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}).$$
 (2)

Dual function

• Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$g(\lambda, \nu) = \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=0}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right).$$
 (3)

- g is always concave in λ, ν .
- A useful property:

$$g(\lambda, \nu) \le p^*$$
, where $p^* = \inf_{\mathbf{x} \in \mathcal{D}} \{f_0(\mathbf{x})\}.$ (4)

• For convex optimization problems, solving Eq. (1) is equivalent to the following optimization problem:

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \succeq 0$. (5)

Quadratic program (QP)

minimize
$$\frac{1}{2}\mathbf{x}^T\mathbf{P}\mathbf{x} + \mathbf{q}^T\mathbf{x} + \mathbf{r}$$

subject to $\mathbf{G}\mathbf{x} \leq \mathbf{h}$ (6)
 $\mathbf{A}\mathbf{x} = \mathbf{b}$,

where \mathbf{P} is a $n \times n$ symmetric, positive semidefinite matrix, $\mathbf{G} \in \mathbb{R}^{m \times n}, \mathbf{A} \in \mathbb{R}^{p \times n}$.

- Objective function is (convex) quadratic
- Equality and inequality constraint functions are affine

Example 1: Color look-up-table design

Given: A training set of multi-dimensional color inputs and their "true" transformed values: $S = \{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, K, \mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathbb{R}$.

Choose look-up-table nodes $\chi^{nd}=\{\mathbf{x}_j^{nd}\}, j=1,\dots,M$ and corresponding output values y_j^{nd} which minimize the following error function:

$$C(\chi^{nd}, \mathbf{y}^{nd}) = \|\mathbf{y}^{tr} - \mathbf{W}_{\chi^{nd}} \cdot \mathbf{y}^{nd}\|^2.$$
 (7)

- ullet Weight matrix $\mathbf{W}_{\chi^{nd}}$ induced by node locations χ^{nd} .
- ullet For fixed \mathbf{y}^{nd} , cost function is convex in $\mathbf{W}_{\chi^{nd}}$.

Weight matrix optimization

minimize
$$\begin{aligned} &\|\mathbf{y}^{tr} - \mathbf{W}_{\chi^{nd}}.\mathbf{y}^{nd^*}\|^2 \\ \text{subject to} & &\mathbf{w}_i^T \mathbf{e}_i = 0, i = 1, 2, \dots, K \\ & & w_{i,j} \geq 0, i = 1, 2, \dots, T, j = 1, 2, \dots, M \\ & & & \mathbf{W}_{\chi^{nd}}.\mathbf{1} = \mathbf{1}. \end{aligned} \tag{8}$$

Interpretation of constraints:

- \mathbf{w}_i is the *i*-th row of $\mathbf{W}_{\chi^{nd}}$, \mathbf{e}_i is a membership vector of zeros and ones. The membership constraint fixes the locations of the nodes with non-zero weights.
- $w_{i,j} \ge 0$: non-negativity of individual matrix elements, since interpolation weights are non-negative..
- Sum of elements in each row of $\mathbf{W}_{\chi^{nd}}$ is 1, since it is an interpolation matrix.

 $\mathbf{W}_{\chi^{nd}}$ is a sparse matrix.

Formulation as a QP

$$\arg\min_{\mathbf{W}} \|\mathbf{y}^{tr} - \mathbf{W}\mathbf{y}^{nd}\|^{2} = \arg\min_{\mathbf{W}} \left((\mathbf{y}^{tr} - \mathbf{W}\mathbf{y}^{nd})^{T} (\mathbf{y}^{tr} - \mathbf{W}\mathbf{y}^{nd}) \right)$$
$$= \arg\min_{\mathbf{W}} \left((\mathbf{y}^{nd})^{T} \mathbf{W}^{T} \mathbf{W}\mathbf{y}^{nd} - 2(\mathbf{y}^{tr})^{T} \mathbf{W}(\mathbf{y}^{nd}) \right)$$

Let $\mathbf{Y} := \mathbf{y}^{nd}(\mathbf{y}^{nd})^T$ and \mathbf{w}_i^T denote the i-th row of \mathbf{W} . Then,

$$\begin{aligned} (\mathbf{y}^{nd})^T \mathbf{W}^T \mathbf{W} \mathbf{y}^{nd} &= tr((\mathbf{y}^{nd})^T \mathbf{W}^T \mathbf{W} \mathbf{y}^{nd}) = tr(\mathbf{W} \mathbf{y}^{nd} (\mathbf{y}^{nd})^T \mathbf{W}^T) \\ &= tr(\mathbf{W} \mathbf{Y} \mathbf{W}^T) = \sum_{i=1}^K \mathbf{w}_i^T \mathbf{Y} \mathbf{w}_i \\ &= vec(\mathbf{W}^T)^T (\mathbf{I}_m \otimes \mathbf{Y}) vec(\mathbf{W}^T) \\ &= vec(\mathbf{W}^T)^T \tilde{\mathbf{Y}} vec(\mathbf{W}^T), \end{aligned}$$

where $vec(\cdot)$ is the vectorizing operator, \mathbf{I}_m is the $m \times m$ identity matrix, and \otimes represents the Kronecker product.

Formulation as a QP (contd.)

Similarly,

$$(\mathbf{y}^{tr})^T \mathbf{W} \mathbf{y}^{nd} = tr((\mathbf{y}^{tr})^T \mathbf{W} \mathbf{y}^{nd}) = tr(\mathbf{W} \mathbf{y}^{nd} (\mathbf{y}^{tr})^T)$$

$$= tr((\mathbf{y}^{nd} (\mathbf{y}^{tr})^T)^T \mathbf{W}^T) = vec(\mathbf{y}^{nd} (\mathbf{y}^{tr})^T)^T \ vec(\mathbf{W}^T).$$

With $\mathbf{z} := vec(\mathbf{W}^T)$ and $\mathbf{c} := -2vec(\mathbf{y}^{nd}(\mathbf{y}^{tr})^T)$, the original cost function becomes

$$\arg\min_{\mathbf{z}} \mathbf{z}^T \tilde{\mathbf{Y}} \mathbf{z} + \mathbf{c}^T \mathbf{z}. \tag{9}$$

- Y positive semidefinite, I_m positive definite $\Rightarrow \tilde{\mathbf{Y}}$ is positive semidefinite (Kronecker product preserves positive definiteness).
- Cost function is quadratic in z.

What about the constraints?

• Membership constraint: Let $\mathbf{0} \in \mathbb{R}^M$ denote the vector with all zeros. Define $\mathbf{E} \in \mathbb{R}^{K \times KM}$ such that

$$\mathbf{E} = \begin{bmatrix} \mathbf{e}_1^T & \mathbf{0}^T & \mathbf{0}^T & \cdots & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{e}_2^T & \mathbf{0}^T & \cdots & \mathbf{0}^T \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{0}^T & \mathbf{0}^T & \cdots & \mathbf{0}^T & \mathbf{e}_K^T \end{bmatrix}$$
(10)

$$\mathbf{w}_i^T \mathbf{e}_i = 0, i = 1, 2, \dots, K \Leftrightarrow \mathbf{E}\mathbf{z} = \mathbf{0} (\in \mathbb{R}^K).$$
 (11)

Non-negativity:

$$w_{i,j} \ge 0 \Leftrightarrow \mathbf{z} \succeq \mathbf{0} (\in \mathbb{R}^{KM}).$$
 (12)

• Interpolation constraint: Let $\mathbf{1} \in \mathbb{R}^M$ denote the vector with all ones. Define $\mathbf{F} \in \mathbb{R}^{K \times KM}$ such that

$$\mathbf{F} = \begin{bmatrix} \mathbf{1}^T & \mathbf{0}^T & \mathbf{0}^T & \cdots & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{1}^T & \mathbf{0}^T & \cdots & \mathbf{0}^T \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{0}^T & \mathbf{0}^T & \cdots & \mathbf{0}^T & \mathbf{1}^T \end{bmatrix}$$
(13)

$$\mathbf{W.1} = \mathbf{1} \Leftrightarrow \mathbf{Fz} = \mathbf{1} (\in \mathbb{R}^K).$$

PENNSTATE
PAL @ To Translation Processing and Algorithms Laboratory 11

Complete optimization problem

minimize
$$\mathbf{z}^T \tilde{\mathbf{Y}} \mathbf{z} + \mathbf{c}^T \mathbf{z}$$

subject to $\mathbf{E} \mathbf{z} = \mathbf{0}$ (15)
 $\mathbf{z} \succeq \mathbf{0}$
 $\mathbf{F} \mathbf{z} = \mathbf{1}$

where

- $\mathbf{z} = vec(\mathbf{W}^T)$
- $\bullet \ \tilde{\mathbf{Y}} = \mathbf{I}_m \otimes (\mathbf{y}^{nd}(\mathbf{y}^{nd})^T)$
- $\mathbf{c} = -2vec(\mathbf{y}^{nd}(\mathbf{y}^{tr})^T)$
- $\mathbf{E} \in \mathbb{R}^{K \times KM}$ is defined in Eq. (10)
- $oldsymbol{\mathbf{F}} \in \mathbb{R}^{K imes KM}$ is defined in Eq. (13)
- ullet K is the number of training points.

Example 2: Spatial resolution enhancement

Figure: Digital image acquisition system³.

09/24/2010

³Park et al., IEEE Signal Processing Magazine, 2003

Model of the forward imaging process

$$\mathbf{y}_k = \mathbf{DBT}_k \mathbf{x} + \mathbf{n}_k, \quad 1 \le k \le K \tag{16}$$

where

- $\mathbf{x} \in \mathbb{R}^n$ is the unknown high-resolution image
- $\mathbf{y}_k \in \mathbb{R}^m \ (m < n)$ represents the k-th low-resolution image
- $\mathbf{T}_k \in \mathbb{R}^{n \times n}$ is the k-th geometric warping matrix
- $oldsymbol{\mathbf{B}} \in \mathbb{R}^{n imes n}$ describes camera optical blur
- $oldsymbol{\mathbf{D}} \in \mathbb{R}^{m imes n}$ is a downsampling matrix of 1s and 0s
- $\mathbf{n}_k \in \mathbb{R}^m$ is the noise vector that corrupts \mathbf{y}_k .

Final optimization problem

minimize
$$\sum_{k=1}^{K} \|\mathbf{y}_{k} - \mathbf{D}\mathbf{B}\mathbf{T}_{k}\mathbf{x}\|_{p} + \lambda \rho(\mathbf{x})$$
subject to
$$\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$$

$$\mathbf{0} \leq \mathbf{D}\mathbf{B}\mathbf{T}_{k}\mathbf{x} \leq \mathbf{1}, \quad 1 \leq k \leq K$$

$$\mathbf{T}_{k}.\mathbf{1} = \mathbf{1}, \quad 1 \leq k \leq K$$

$$\mathbf{B}.\mathbf{1} = \mathbf{1}$$

$$\mathbf{t}_{k,i}^{T}\mathbf{m}_{k,i} = 0, \quad 1 \leq i \leq n, \quad 1 \leq k \leq K$$

$$\mathbf{b}_{i}^{T}\mathbf{e}_{i} = 0, \quad 1 \leq i \leq n$$

$$(17)$$

 \mathbf{D}, \mathbf{B} and \mathbf{T}_k are sparse matrices.

Open problems

- Dual function analysis for the optimization in Example 1, i.e., solution to Eq. (5)
- Does there exist a closed-form solution to the optimization problems?
 - If not, can a closed-form solution be obtained by dropping any of the constraints?
 - In that case, will the resulting solution be physically meaningful?
- How can the sparse matrix optimization be performed more efficiently?