
1

Adaptive Transform Domain Image Super-resolution
Via Orthogonally Regularized Deep Networks

Supplementary Document

Tiantong Guo, Hojjat Seyed Mousavi, Vishal Monga
The Pennsylvania State University

In this supplementary document, we provide details of the DCT and IDCT using the CDCT layer as well as the associated
proof. We also provide image validation of the proof. The training details such as the data augmentation methods and training
records are also provided. Hardware, software, and project pages are pointed out in this document. Furthermore, the network
size and speed is reported. We also included a discussion over the CDCT filter size choice. The content is indexed as below:

CONTENTS

I Image DCT and IDCT 1
I-A Discrete cosine transform . 1
I-B Inverse discrete cosine transform . 2

II CDCT layer structure 2

III DCT by CDCT layer 2
III-A For stride S = N without overlapping . 2
III-B For stride S < N with overlapping of N − S . 3

IV IDCT by CDCT layer 4
IV-A For stride S = N without overlapping . 4
IV-B For stride S < N with overlapping of N − S . 4

V Validation of DCT and IDCT by CDCT layer 5

VI Modified backpropagation for ORDSR 6

VII Training Details 7
VII-A Dataset and augmentations . 7
VII-B Hardware, software, and project page . 8
VII-C Network size and speed . 9
VII-D CDCT filter size . 9
VII-E Training record . 9

References 10

I. IMAGE DCT AND IDCT

A. Discrete cosine transform

Given an image x of size H ×W , it can be decomposed into H/N ×W/N blocks of size N ×N [1]. For the (m,n)th

block xm,n ∈ RN×N , the DCT coefficients are computed as:

Xm,n(k1, k2) =
N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wdct
k1,k2(n1, n2) (1)

where k1, k2 ∈ {0, . . . , N − 1}, and wk1,k2 ∈ RN×N is the DCT basis function defined as:

wdct
k1,k2(n1, n2) = Ck1,k2cos

[
(
π

N

(
n1 +

1

2

)
k1

]
cos

[
(
π

N

(
n2 +

1

2

)
k2

]
(2)

2

where Ck1,k2 =

√
1+δk1

√
1+δk2

N and

δk =

{
1, if k = 0,

0, otherwise.
(3)

For N = 8, there are 8× 8 DCT bases and each basis wdct
k1,k2

∈ RN×N .

B. Inverse discrete cosine transform

Corresponding to the DCT, the inverse DCT (IDCT) for the (m,n)th block is computed as:

xm,n(n1, n2) =

N−1∑
k2=0

N−1∑
k1=0

Xm,n(k1, k2)×wdct
k1,k2(n1, n2) (4)

II. CDCT LAYER STRUCTURE

We treat DCT basis functions as filters and organize them in zig-zag order:

• Re-index wdct
k1,k2 to wi with zig-zag mapping function Zig: Zig(k1, k2) = i where (k1, k2) ∈ {0, . . . , N−1}×{0, . . . , N−

1} → i ∈ {1, . . . , N ×N}
• Zig(k1, k2) = i and Zig−1(i) = (k1, k2)
• Now here are N ×N DCT basis filters {wi}N×Ni=1 , each of size N ×N
• As i increasing, wi’s complexity also increases.

III. DCT BY CDCT LAYER

A. For stride S = N without overlapping

First we show the DCT by CDCT layer without overlapping and stride of S = N = 8. Convolve image x ∈ RW×H with
{wi}N×Ni=1 DCT basis filters:
• Convolve without overlapping, with shift of N .
• For (m,n) = {1, ...,H/N} × {1, ...,W/N}, Xdct

m,n(k1, k2) is the (m,n)th DCT coefficients block indexed by (k1, k2).
• Use zig-zag reorder function: Xdct

m,n(i) := Xdct
m,n(Zig(k1, k2)).

• We claim: for a fixed i, x ∗wi gives DCT coefficients Xdct
m,n(i) for every (m,n)th blocks.

• Xi := x ∗wi, where Xi ∈ RW
N ×H

N

• As i increases, smaller details are captured by x ∗wi

Proposition DCT by CDCT layer generates the same DCT coefficients Xdct
m,n for xm,n, where (m,n) denotes one N × N

block’s index.
Proof For a fixed block (m,n), k1, k2, n1, n2 = {1, . . . , N}
We have DCT:

Xdct
m,n(k1, k2) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wk1,k2(n1, n2)

3

For CDCT layer, convolve x with wi:

Xcdct
i (m,n) =

(m+1)×N−1∑
n2=m×N

(n+1)×N−1∑
n1=n×N

x(n1, n2)×wi(n1 − n×N + 1, n2 −m×N + 1) (5)

For fixed (m,n) and i ∈ {1, ..., N × N}, the Xcdct
i (m,n) ∈ RN2×1 can be re-indexed as Xcdct

m,n(i) ∈ RN×N . And for
n1 ∈ {n × N, ..., (n + 1) × N − 1};n2 ∈ {m × N, ..., (m + 1) × N − 1}, x(n1, n2) ∈ RN×N can be re-indexed as
xm,n(n1, n2) ∈ RN×N with n1 ∈ {0, ..., N − 1};n2 ∈ {0, ..., N − 1}:

Xcdct
m,n(i) := Xcdct

i (m,n) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wi(n1, n2) (6)

Now for the given i, ∃(k1, k2) such that wi = wk1,k2 where i = Zig(k1, k2). Thus,

Xcdct
m,n(i) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wk1,k2(n1, n2)

= Xdct
m,n(k1, k2) (7)

where i = Zig(k1, k2). �

B. For stride S < N with overlapping of N − S
Now we derive the DCT procedure with arbitrary stride S, and S ≤ N :
• Convolve with stride of S leading to an overlapping of N − S at adjacent convolution operation on x.
• For (m,n) = {1, ...,H/S} × {1, ...,W/S}, Xdct

m,n(k1, k2) ∈ RN×N is the (m,n)th DCT coefficients block indexed by
(k1, k2) with overlapping of S with adjacent block.

• Use zig-zag reorder function: Xm,n(i) := Xdct
m,n(Zig(k1, k2)).

• For a fixed i, x ∗wi gives DCT coefficients Xm,n(i) for every (m,n)th blocks.
• Xi := x ∗wi, where Xi ∈ RW

S ×H
S

• As i increases, smaller details are captured by x ∗wi

Proposition Convolution between x and wi in CDCT layer generates the same DCT coefficients Xdct
m,n for xm,n, where (m,n)

denotes one N ×N block’s index.
Proof For a fixed block (m,n) ∈ {1, ...,H/S} × {1, ...,W/S}, k1, k2, n1, n2 = 1, . . . , N
We have DCT:

Xdct
m,n(k1, k2) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wdct
k1,k2(n1, n2) (8)

For CDCT layer, convolve x with wi:

Xcdct
i (m,n) =

m×S+N−1∑
n2=m×S

n×S+N−1∑
n1=n×S

x(n1, n2)×wi(n1 − n× S + 1, n2 −m× S + 1) (9)

For a fixed (m,n) ∈ {1, ...,H/S} × {1, ...,W/S} and i = 1, ..., N ×N , the Xcdct
i (m,n) can be re-indexed as:

Xcdct
m,n(i) := Xcdct

i (m,n) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wi(n1, n2) (10)

Now for the given i, ∃(k1, k2) such that wi = wk1,k2 where i = Zig(k1, k2). Thus,

Xcdct
m,n(i) =

N−1∑
n2=0

N−1∑
n1=0

xm,n(n1, n2)×wk1,k2(n1, n2)

= Xdct
m,n(k1, k2) (11)

where i = Zig(k1, k2). Thus, DCT by CDCT layer generates zig-zag arranged blocked DCT. Note that the Xi with stride
S produces rearranged DCT coefficients for S overlapped blocks. For example, Xi(m,n) and Xi(m,n − 1) are the ith zig-
zag reordered DCT coefficients associated with block x(x1, y1) and x(x2, y2) with x1, x2 ∈ {m × S, ...,m × S + N − 1},
y1 ∈ {n× S, ..., n× S +N − 1} and y2 ∈ {(n− 1)× S, ..., (n− 1)× S +N − 1}. �

4

IV. IDCT BY CDCT LAYER

A. For stride S = N without overlapping

First we show the IDCT by CDCT layer with the DCT cube generated by non-overlapping and stride of S = N . Transpose-
convolve features Xi ∈ RW

N ×H
N , i = 1, ..., N ×N with {wi}N×Ni=1 DCT basis: Padding Xi with padding function gs(·). For a

given location (p, q) ∈ {1, ...,W} × {1, ...,H}:

X̄i(p, q) =

{
1

(N/S)2 Xi(k, l), if p = k ×N and q = l ×N
0, Otherwise

, (12)

where k = {1, . . . WN }, l = {1, . . . HN } and S = N . Note that with S = N , the term 1
(N/S)2 = 1 means the gs(·) keeps

the Xi value as given and does not apply reweighing. This is a different case from next section for S ≤ N . We denote
gs(Xi) := X̄i ∈ RW×H which is a zero padded version of Xi.
Transpose convolve: convolve gs(Xi) with wi with a shifting of 1. For a fixed i, gs(Xi)∗wi gives all i-th spatial component
for x.

xi = g(Xi) ∗wi, (13)

where xi ∈ RW×H . The final spatial results:

x =

N×N∑
i=1

gs(Xi) ∗wi (14)

Proposition Transpose convolve gs(Xi) with wi and sums together generates the same xm,n from DCT coefficients Xm,n,
(m,n) denotes one N ×N block’s index.
Proof For a fixed block (m,n), k1, k2, n1, n2 ∈ {1, . . . , N}
IDCT:

xdct
m,n(n1, n2) =

N−1∑
k2=0

N−1∑
k1=0

Xm,n(k1, k2)×wk1,k2(n1, n2) (15)

IDCT by CDCT layer:

xcdct
m,n(n1, n2) =

N×N∑
i=1

N−1∑
p=0

N−1∑
q=0

X̄i(m×N + n1 − p, n×N + n2 − q)×wi(p, q) (16)

where X̄i(m×N + n1 − p, n×N + n2 − q) 6= 0, while n1 − p+m×N = m×N and n2 − q+ n×N = n×N (based the
definition of X̄ from Eq. (12)), reordering the index we have:

xcdct
m,n(n1, n2) =

N×N∑
i

Xi(m,n)×wi(n1, n2) (17)

Since Zig−1(wi) = wk1,k2 and Zig−1(Xi) = Xk1,k2 , we have:

xcdct
m,n(n1, n2) =

N×N∑
i

Xi(m,n)×wi(n1, n2)

=

N−1∑
k1=0

N−1∑
k2=0

Xk1,k2(m,n)×wk1,k2(n1, n2)

=

N−1∑
k1=0

N−1∑
k2=0

Xm,n(k1, k2)×wk1,k2(n1, n2) (18)

IDCT by neural network generates same xm,n(n1, n2) for a given block. �

B. For stride S < N with overlapping of N − S
Now we derive the IDCT procedure with DCT cube associated with arbitrary stride S, and S ≤ N . The transpose-convolve

features Xi ∈ RW
S ×H

S , i ∈ {1, ..., N × N} with {wi}N×Ni=1 DCT basis. We first pad Xi with padding function gs(·). For a
given location (p, q) ∈ {1, ...,W} × {1, ...,H}:

X̄i(p, q) =

{
1

(N/S)2 Xi(k, l), if p = k × S and q = l × S
0, Otherwise

, (19)

5

where k ∈ {1, . . . WS }, l ∈ {1, . . .
H
S }. Note that the padding function gs(·) is averaged by 1

(S/N)2 . This is due to the S ≤ N

and coefficients are computed multiple times. We denote gs(Xi) := X̄i ∈ RW×H which is a weighted zero padded version of
Xi.
Transpose convolve: convolve gs(Xi) with wi with a shifting of 1. For a fixed i, gs(Xi)∗wi gives all i-th spatial component
for x:

xi = gs(Xi) ∗wi, (20)

where xi ∈ RW×H . The final spatial SR results: x =
∑N×N
i=1 gs(Xi) ∗wi

Proposition Transpose convolve gs(Xi) with wi and sums together generates the same xm,n from DCT coefficients Xm,n,
where (m,n) denotes one N ×N block’s index.
Proof For a fixed block (m,n), k1, k2, n1, n2 ∈ {1, . . . , N}
IDCT:

xdct
m,n(n1, n2) =

N−1∑
k2=0

N−1∑
k1=0

Xm,n(k1, k2)×wk1,k2(n1, n2) (21)

IDCT by CDCT layer: From previous proof, we have that

x̄cdct
m,n(n1, n2) =

N×N∑
i

1

(N/S)2
Xi(m,n)×wi(n1, n2) (22)

Now S ≤ N , (n1, n2) ∈ {0, 1, ..., N} × {0, 1, ..., N}, for every Xi(m,n), Eq. (22) produces a x̄m,n ∈ RN×N :

x̄cdct
m,n =

N×N∑
i

1

(N/S)2
Xi(m,n)�wi, (23)

where � denotes scaler multiple with every element in the matrix.

The 1
(N/S)2 is generated by the gs(·) weighting the Xi as in Eq. (19). At any given block (m,n)’s location (n1, n2),

xcdct
m,n(n1, n2) is computed as1:

xcdct
m,n(n1, n2) =

N/2S∑
k=−N/2S

N/2S∑
l=−N/2S

x̄cdct
m−k,n−l(n1 − k × S, n2 − l × S) (24)

With stride S, x̄cdct
m,n are corresponding to patches that are overlapping with width of N − S, the following entries are equal

to each other:

x̄cdct
m,n(n1, n2) = x̄cdct

m−k,n−l(n1 − k × S, n2 − l × S), where k ∈ [−N/2S, ..., N/2S], l ∈ [−N/2S, ..., N/2S] (25)

Thus Eq. (24) is rewritten as:

xcdct
m,n(n1, n2) = (N/S)2

N×N∑
i

1

(N/S)2
Xi(m,n)×wi(n1, n2) =

N×N∑
i

Xi(m,n)×wi(n1, n2) (26)

Follow the same proof as Eq. (18), we have shown that the transpose convolution between gs(Xi) with wi and sums together
generates the same xm,n from DCT coefficients Xm,n. �

V. VALIDATION OF DCT AND IDCT BY CDCT LAYER

In this section we provide validations of DCT and IDCT performed by CDCT layer. First with S = N = 8, the input x of
the CDCT layer is shown in Fig. 1. The MSE between input and reconstructed image = 1.2e − 14 which is in the range of
round-off precision error.

With S = 2, there are overlapping of N − S = 6 between every adjacent reconstructed patch xm,n. This overlapping is
averaged by weighting the reconstruct patch. Detailed image shown in Fig. 2. The MSE between the input image and the
reconstruction = 1.5e− 14 which is in the range of round-off precision error.

1For xm,n where (m,n) ∈ {0, 1, ..., N/S − 1} × {0, ..., N/S − 1} or (m,n) ∈ {0, 1, ..., N/S − 1} × {H/S − N/S × S,H/S − (N/S − 1) ×
S, ..., H/S−S} or (m,n) ∈ {W/S−N/S×S,W/S− (N/S− 1)×S, ...,W/S−S}× {0, 1, ..., N/S− 1} or (m,n) ∈ {W/S−N/S×S,W/S−
(N/S− 1)×S, ...,W/S−S}×{H/S−N/S×S,H/S− (N/S− 1)×S, ..., H/S−S}, the overlapping region in these patches are not (S/N)2 times.
This edge effect is eliminated by either cropping out the N -pixel width edge or re-weight the edge by its according overlapping times. This work choice to
crop out the edges is the same operation following the literature as shows in multiple deep learning based studies, Dong et.al [2], Kim et.al [3], etc.

6

(a) input image x (b) reconstructed image

Fig. 1: CDCT layer reconstruction validation, i.e. DCT followed by IDCT with S = N = 8

(a) input image x (b) reconstructed image

Fig. 2: CDCT layer reconstruction validation, i.e. DCT followed by IDCT with S = 2

VI. MODIFIED BACKPROPAGATION FOR ORDSR

As shown in the main manuscript, the cost function of ORDSR is given as:

L(Θ,B) =
1

2
‖F (x)− y‖22︸ ︷︷ ︸

MSE loss

+σ
1

2

∑
l

‖Wl‖22︸ ︷︷ ︸
weight decay

+γ
1

2

∑
(i,j),i6=j

‖vec(wi)
T vec(wj)− ε‖22︸ ︷︷ ︸

orthogonality constraint

+λ
1

2

∑
t

‖var(wt)− var(wdct
t)‖22︸ ︷︷ ︸

complexity order constraint

(27)

where the var(wi) is given by Bessel’s correction version:

var(w) =
1

N2 − 1

∑
m

(wm − 1

N2

∑
n

wn)2 (28)

where w∗i denotes an arbitrary scalar entry in filter wi and
∑
∗w∗i denotes the summation of all the elements inside w.

Note that ŷ := F (x). And the network is trained to minimize:

Θ,B = arg min
Θ,B

L(Θ,B) (29)

where Θ = {Θcnn, {wi}64i=1}, Θcnn = {Wl}Dl=1 and B = {bl}Dl=1 (as in the main manuscript). Note that the Wl ∈ Rcl×nl×nl

is a representative notation of the ml filters in layer l. Detailed ml, cl, nl please see the main manuscript.
The weights and bias are updates as:

Θt+1 = Θt − η∇ΘL(Θt), Bt+1 = Bt − η∇BL(Bt) (30)

7

The following terms need to be computed:
∂L

∂Wl
,
∂L

∂wi
,
∂L

∂bl
(31)

where Wl denotes a filter at lth layer of the CNN representatively, wi denotes the ith filter in the CDCT layer and bl denotes
a bias at lth layer of the CNN.
For bl in D-layer CNN:

∂L

∂bal
= − < (ŷ − y),

∂y

∂bal
>F (32)

For Wl in D-layer CNN:
∂L

∂Wa
l

= − < (ŷ − y),
∂y

∂Wa
l

>F +σ < Wl,
∂Wl

∂Wa
l

>F (33)

where Wa
l denotes an arbitrary scalar entry within the representative filter Wl, and < ·, · >F denotes the real value Frobenius

inner product: For two real valued matrix A and B with same dimension, < A,B >F :=
∑
i,j Ai,jBi,j where i, j are the

indexes of the entries. In Eq. (33), ∂y
∂Wa

l
is computed by following the standard backpropagation rule for each layer l.

For the CDCT filter wi, the gradient w.r.t an arbitrary scalar entry wa
i is given by:

∂L

∂wa
i

=− < (ŷ − y),
∂y

∂wa
i

>F

+ γ
∑
(j)

(
vec(wi)

T vec(wj)− ε
)
wa
j︸ ︷︷ ︸

gradient of orthogonality constraint w.r.t wa
i

+ λ
∂var(wi)

∂wa
i

(
var(wi)− var(wdct

i)
)

︸ ︷︷ ︸
gradient of complexity order constraint w.r.t wa

i

(34)

where ∂y
∂wa

l
is computed following the standard backpropagation rule. ∂var(wi)

∂wa
i

is the partial derivative of var(wi) w.r.t wa
i is

given by:

∂var(wi)

∂wa
i

=
∂ 1
N2−1

∑
m(wm

i − 1
N2

∑
n wn

i)2

∂wa
i

=
2

N2 − 1

∑
m

(
(wm

i −
1

N2

∑
n

wn
i)
∂(wm

i − 1
N2

∑
n wn

i)

wa
i

)

=
2

N2 − 1

∑
m6=a

(
(wm

i −
1

N2

∑
n

wn
i)(0− 1

N2
)

)
+

(
(wa

i −
1

N2

∑
n

wn
i)(1− 1

N2
)

)
=

2

N2 − 1

− 1

N2

∑
m 6=a

(
(wm

i −
1

N2

∑
n

wn
i)

)
− 1

N2
(wa

i −
1

N2

∑
n

wn
i) + wa

i −
1

N2

∑
n

wn
i)

=

2

N2 − 1

[
− 1

N2

∑
m

(
(wm

i −
1

N2

∑
n

wn
i)

)
+ wa

i −
1

N2

∑
n

wn
i)

]

=
2

N2(N2 − 1)

[
N2wa

i −
∑
n

wn
i −

∑
m

(
wm
i −

1

N2

∑
n

wn
i

)]

(35)

The aforementioned ∂y
∂Wa

l
, ∂y
∂wa

l
and ∂y

∂ba
l

are following the same backpropagation rule of CNN [4].

VII. TRAINING DETAILS

A. Dataset and augmentations

The 291 images dataset [5] is used for training. The images are augmented by a combination of three methods:
1) Rotating the images by {45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦};
2) Horizontal and vertical flip;
3) Scaling by factors of {0.7, 0.8, 0.9}.

8

(a) Original training image (b) Luminance channel of
original image

(c) Rotation of 90◦ (d) Rotation of 180◦ (e) Rotation of 270◦

(f) Horizontal flip (g) Vertical flip (h) Scale by 0.7 (i) Scale by 0.8 (j) Scale by 0.9

Fig. 3: Training image 000t16.bmp, its luminance channel with rotations, flips, and scaling.

(a) Original luminance train-
ing image

(b) Rotation of 45◦ (c) Rotation of 135◦ (d) Rotation of 225◦

(e) Copped rotation of 45◦ (f) Copped rotation of 135◦(g) Copped rotation of 225◦

Fig. 4: Training image 000t16.bmp and its luminance channel with rotations. The cropped regions are shown within the white
bonding boxes.

The augmentation method will resulting 8×2×3 = 48 times of the original 291 training images, giving at total 291×48 = 13968
training images. During the training, at each epoch, instead of taking in all the augmented data, 50% of the 13968 images
are selected to form the training patches. Training patches are cropped out as described in the main manuscript. During the
training, random patches are selected forming the training batches. This random selection technique combining with Statistic
Gradient Descent method speeds the training process.

Fig. 3 and Fig. 4 show the augmentation examples of the training set. Note that for rotation angle {45◦, 135◦,225◦}, only
the valid image parts are stored as newly augmented images as shown in Fig. 4.

B. Hardware, software, and project page

Both training and test are conducted on one NVIDIA Titan X GPU (12GB).
The implementation of ORDSR and DCT-DSR uses the Tensorflow package [6], version r1.2 with python 2.7.
Project page: http://signal.ee.psu.edu/research/ORDSR.html.

http://signal.ee.psu.edu/research/ORDSR.html

9

TABLE I: Average PSNR on Set5 with scale factor 3 – different stride size.

S 2 3 4 5 8
PSNR(db) 34.31 34.10 33.85 33.60 32.95

InferenceTime(sec) 0.1 0.08 0.062 0.045 0.02

C. Network size and speed

VDSR uses 2 3×3×64 and 18 3×3×64×64 convolutional layer. Total parameters2: 2×3×3×64+18×3×3×64×64 =
664704.

EDSR uses 32 residual blocks where each block has 2 convolutional layer. Each convolutional layer has size of 3 × 3 ×
256× 256. Also there are one input layer and one output layer of size 3× 3× 256 leading the total number of parameters be:
32× 3× 3× 256× 256× 2 + 2× 3× 3× 256 = 37753344.

RDN uses 16 dense residual blocks where each block has 8 convolutional layer. Each convolutional layer has size of
3 × 3 × 64 × 64. Also there are one input layer and one output layer of size 3 × 3 × 64 × 3 leading the total number of
parameters be: 16× 8× 3× 3× 64× 64 + 2× 3× 3× 256× 3 = 4732416.

ORDSR uses one 8×8×64 CDCT layer, one 5×5×64×64, thirteen 3×3×64×64, and one 3×3×60×64 convolutional
layers. Total parameter number is: 8× 8× 64 + 5× 5× 64× 64 + 13× 3× 3× 64× 64 + 3× 3× 60× 64 = 620288. This
makes ORSR uses 44416 less parameters than VDSR and about 5% of parameters as EDSR.

10−210−1100

32.5

33.5

34.5

A+

ScSR

SCN
SRCNN

FSRCNN

RDN

VDSR

EDSRDCT-DSR-2

ORDSR-2

ORDSR-3

ORDSR-4

ORDSR-5

ORDSR-8

Inference Time (sec)

P
S
N
R

(d
b
)

Fig. 5: ORDSR vs. state-of-the-art methods. PSNR on Set5 with scale factor of 3, plotted against inference time.

Fig. 5 plots the inference time vs. PSNR of ORDSR and other competing methods for scale factor 3 on Set5, where numerical
results are reported in Table I. According to the guidelines in [7], ORDSR inference time may in fact be considered close to
real-time processing. ORDSR-2, -3, -4, -5, and -8 refer to ORDSR with different stride S. Note that using larger stride can
further speed up the inferences.

D. CDCT filter size

As we select the CDCT layer to be initialized from the 8 × 8 conventional DCT basis following the literate, other CDCT
filter size may still be feasible. We then initial the CDCT layer from the DCT basis of 6×6, 8×8 (as in ORDSR), and 10×10
and conduct the training as the ORDSR with two constraints in place. Note that during training, other network parameters are
setup following the guide of ORDSR (see main manuscript Section IV-B).

TABLE II: Average PSNR on Set5 with scale factor 3 – different CDCT layer filter size.

N ×N 6× 6 8× 8 10× 10
number of filters 36 64 100

T 3 4 6
PSNR(db) 33.65 34.31 34.34

E. Training record

There are two training phases for training ORDSR. The network is first initialized as DCT-DSR for training the residual
network in the DCT domain. Then the trained DCT-DSR is trained with constraints, e.g. Orthogonality Constraints and
Complexity Order Constraints. Using abundant training data, following the same setups as described in the main manuscript,

2For simplicity, we only count in convolutional filter parameters which has major influence on the network size.

10

Fig. 6 shows the plot of the cost function evaluation against training epoch with the constraints in place. As it shown in the
table, 8 × 8 CDCT layer gives the best performance. The learning rate is initialized to 104 for all layers and decreases half
for every 50 epochs. During the training 128 training patch pairs with the size of 40× 40 are randomly extracted.

Epoch
101 102

C
o

s
t

E
v
a

lu
a

ti
o

n

2

3

4

5

6

7

Fig. 6: Cost function evaluation during the training process.

REFERENCES

[1] R. Gonzalez and P. Wintz, “Digital image processing,” 1977.
[2] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 38, no. 2, pp. 295–307, 2016.
[3] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in IEEE Conf. on Computer Vision and

Pattern Recognition, 2016, pp. 1646–1654.
[4] Y. B. Y. LeCun, L. Bottou and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.
[5] S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image upscaling with super-resolution forests,” in IEEE Conf. on Computer Vision and Pattern

Recognition, 2015, pp. 3791–3799.
[6] M. Abadi, A. Agarwal, and P. B. et. al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. [Online]. Available:

http://tensorflow.org/
[7] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using

an efficient sub-pixel convolutional neural network,” in IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.

http://tensorflow.org/

	Image DCT and IDCT
	Discrete cosine transform
	Inverse discrete cosine transform

	CDCT layer structure
	DCT by CDCT layer
	For stride S=N without overlapping
	For stride S<N with overlapping of N-S

	IDCT by CDCT layer
	For stride S=N without overlapping
	For stride S<N with overlapping of N-S

	Validation of DCT and IDCT by CDCT layer
	Modified backpropagation for ORDSR
	Training Details
	Dataset and augmentations
	Hardware, software, and project page
	Network size and speed
	CDCT filter size
	Training record

	References

