Convolutional DCT Image Super-resolution Progress Report & Next Step

Department of Electrical Engineering

Pennsylvania State University

Information Processing & Algorithms Laboratory

2018

Outline

Convolutional DCT Network

- 2D DCT and representation process
- 2D DCT and 2D IDCT by transpose convolutional neural network
- Orthogonality constrains
- Training process
- Preliminary Results
 - SSIM, PSNR, IFC
 - CDCT layer: threshold and orthogonality
- In Next Step
 - Complexity order constrains
 - De-noising and SR

2D DCT & Representation

Compute DCT coefficients block X_{ij} for x_{ij}

$$X_{ij}(k_1, k_2) = \sum_{n_2=0}^{N-1} \sum_{n_1=0}^{N-1} x_{ij}(n_1, n_2) \times f_{k_1, k_2}(n_1, n_2)$$

Note that x_{ij} and X_{ij} is the same size 8×8 . Coefficient $X_{ij}(k_1, k_2)$ represents the significance of basis $f_{k_1k_2}$ embedded in x_{ij} .

2D IDCT & Representation

Compute $x_{(i,j)}$ from DCT coefficients block X_{ij}

$$x_{ij}(n_1, n_2) = \sum_{k_2=0}^{N-1} \sum_{k_1=0}^{N-1} X_{ij}(k_1, k_2) \times f_{k_1, k_2}(n_1, n_2)$$

Coefficient $X_{ij}(k_1, k_2)$ represents the significance of basis $f_{k_1k_2}$ embedded in x_{ij} .

2D DCT & IDCT

Process the whole image and inverse procedure:

Each block only contains its own spatial information.

• Treat DCT basis functions as filters and organize in zig-zag order:

- Re-index $f_{k1,k2}$ to f_k with zig-zag mapping function Zig: $Ziq\{(k_1, k_2)\} = k$ where $(k_1, k_2) \in (0, \dots, N-1) \times (0, \dots, N-1) \to k \in (1, \dots, N \times N)$ • $Zig\{(k_1, k_2)\} = k$ and $Zig^{-1}\{k\} = (k_1, k_2)$
- Now here are $\{f_k\}_{k=1}^{N \times N}$ DCT basis filters, each of size $M_{k=1}^{\text{Intermation Processing}}$

Convolve image $x \in \mathbb{R}^{(W \times H)}$ with $\{f_k\}_{k=1}^{N \times N}$ DCT basis filters:

- Convolve without overlapping, with shift of N.
- For a fixed k, $x * f_k$ gives DCT coefficients $X_{ij}(k)$ of all x's x_{ij}

•
$$x * f_k = X_k$$
, where $X_k \in \mathbb{R}^{\frac{W}{N} \times \frac{H}{N}}$

• As k increases, smaller details are captured by $x * f_1$

Original image

from top right block of image

8

DCT by neural network: proof

Prove: DCT by neural network generates the same DCT coefficients X_{ij} for x_{ij} , ij denotes one 8×8 block For a fixed block ij, $k_1, k_2, n_1, n_2 = 1, \dots, N$ DCT:

$$X_{ij}(k_1, k_2) = \sum_{n_2=0}^{N-1} \sum_{n_1=0}^{N-1} x_{ij}(n_1, n_2) \times f_{k_1, k_2}(n_1, n_2)$$

DCT by neural network:

•
$$X(i,j)_k = \sum_{n_2=i \times N}^{(i+1) \times N} \sum_{n_1=j \times N}^{(j+1) \times N} x(n_1,n_2) \times f_k(n_1,n_2)$$

• For fixed
$$ij$$
, the $X(i,j)_k$ can be re-indexed as:
 $X_{ij}(k) = \sum_{n_2=0}^N \sum_0^N x_{ij}(n_1,n_2) \times f_k(n_1,n_2)$

• Since $Zig^{-1}(f_k) = f_{k_1,k_2}$, we have:

$$Zig^{-1}(X_{ij}(k)) = \sum_{n_2=0}^{N} \sum_{n_1=0}^{N} x_{ij}(n_1, n_2) \times Zig^{-1}(f_k(n_1, n_2))$$
$$= \sum_{n_2=0}^{N} \sum_{n_1=0}^{N} x_{ij}(n_1, n_2) \times f_{k_1, k_2}(n_1, n_2) = X_{ij}(k_1, k_2)$$

Thus, DCT by neural network generates zig-zag arranged blocked DCT.

Inverse DCT by neural network

Transpose-convolve features $X \in \mathbb{R}^{N^2 \times \frac{W}{N} \times \frac{H}{N}}$ with $\{f_k\}_{k=1}^{N \times N}$ DCT basis:

• Padding:
$$\bar{X}_k(i,j) = \begin{cases} X_k(k,l), & \text{if } i = 8k \text{ and } j = 8l \\ 0, & \text{Otherwise} \end{cases}$$
, $k = 1, \dots, \frac{W}{N}, l = 1, \dots, \frac{H}{N},$

- Transpose convolve: convolution with shifting 1
- For a fixed k, $\bar{X}_k * f_k$ gives all x_{ij} 's k-th spatial component

•
$$\bar{X}_k * f_k = x_k$$
, where $x_k \in \mathbb{R}^{W \times I}$

• The final results:
$$x = \sum_{k=1}^{N^2} \bar{X}_k * f_k$$

Inverse DCT by neural network

Inverse DCT by neural network

iDCT by neural network: proof

Prove: iDCT by neural network generates the same x_{ij} from DCT coefficients X_{ij} , ij denotes one 8×8 block For a fixed block ij, $k_1, k_2, n_1, n_2 = 1, \ldots, N$ iDCT:

$$x_{ij}(n_1, n_2) = \sum_{k_2=0}^{N-1} \sum_{k_1=0}^{N-1} X_{ij}(k_1, k_2) \times f_{k_1, k_2}(n_1, n_2)$$

iDCT by neural network:

- $x_{ij}(n_1, n_2) = \sum_{k=1}^{N \times N} \sum_{l=i \times N}^{(i+1) \times N} \sum_{m=j \times N}^{(j+1) \times N} \bar{X}_k(i \times N + n_1 l, j \times N + n_2 m) \times f_k(l, m)$
- $\bar{X}_k(i \times N + n_1 l, j \times N + n_2 m) \neq 0$ while $n_1 l + i \times N = i \times N$, reordering the index we have: $x_{ij}(n_1, n_2) = \sum_k^{N \times N} X_k(i, j) \times f_k(n_1, n_2)$

iDCT by neural network: proof

Prove: iDCT by neural network generates the same x_{ij} from DCT coefficients X_{ij} , ij denotes one 8×8 block For a fixed block ij, $k_1, k_2, n_1, n_2 = 1, \ldots, N$ iDCT:

$$x_{ij}(n_1, n_2) = \sum_{k_2=0}^{N-1} \sum_{k_1=0}^{N-1} X_{ij}(k_1, k_2) \times f_{k_1, k_2}(n_1, n_2)$$

iDCT by neural network:

• Since $Zig^{-1}(f_k) = f_{k_1,k_2}$ and $Zig^{-1}(X_k) = X_{k_1,k_2}$, we have:

$$\begin{aligned} x_{ij}(n_1, n_2) &= \sum_{k}^{N \times N} X_k(i, j) \times f_k(n_1, n_2) \\ &= \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} X_{k_1, k_2}(i, j) \times f_{k_1, k_2}(n_1, n_2) \\ &= \sum_{k_1=0}^{N-1} \sum_{k_2=0}^{N-1} X_{ij}(k_1, k_2) \times f_{k_1, k_2}(n_1, n_2) \end{aligned}$$

• iDCT by neural network generates same $x_{ii}(n_1, n_2)$ for a given block.

visit us at: http://signal.ee.psu.edu/