Supplementary Document for
GlideNet: Global, Local and Intrinsic based
Dense Embedding NETwork for Multi-category
Attributes Prediction

S.1 Introduction

This is a supplementary document that contains some useful information for accurately
reproducing findings, as well as the reasoning for using Visual Attributes in the Wild
(VAW) and Cityscapes Attributes Recognition (CAR) datasets for experiments in the
GlideNet paper.

The complete specifications and setup of the proposed network — Global, Local
and Intrinsic based Dense Embedding Network (GlideNet) — architecture are stored in
Section S.2.

Section S.3 discusses the two datasets, VAW and CAR datasets, used in the evalu-
ation and why we chose those two datasets in particular.

All of the configurations for training GlideNet are contained in Section S.4.

S.2 Network Architecture Details

In this section, we discuss the exact details of each building block of GlideNet. The
reader is encouraged to read Section 3.1 in the main document (GlideNet-paper) first to
understand the purpose of each building block. Here, we only show the configurations
without a detailed description of the purpose. In our training algorithms (Section 3.2),
we have two stages. The first stage uses ‘temporary’ decoders that are removed later
in both Stage II of training and the inference stage. The details of these temporary
decoders are found in Sections S.2.6 to S.2.8

S.2.1 Feature Extractors (FEs)

For all Feature Extractors (FEs), we use the backbone of ResNet-50 [3]. Specifically,
we take the output after layers 2, 3, &4 as our features. The inputs to the FEs are always
resized to 224 x 224. Since the output features don’t match in spatial dimensions, we
upsample them to the size of the largest, which is 28 x 28. The total number of the
output channels for each FE in this case is 128 + 128 4 512 = 768. In the case

Table S.1: Structure of Object Descriptor (D)

relu relu

Layer Name D.C.1 D.C2 D.M.1 DM.2 D.P1 D.P2
Tnput B DC1 M DM.1 DM2® D.C2 DP1
o 2 a6 20 /e 3 % 3 conv(32, 64) 3 x 3 conv(64,128)
Linear(2260,512)] [Linear(512,32)] | ° % 3 comV(1.16)/2] - [3x 3 conv(16,52)/2 batch norm batch norm
Structure batch norm batch norm . N
relu softmax relu sigmoid

upsample(2) upsample(2)
Output 512 32 16 x 112 x 112 32 x 56 x 56 64 x 112 x 112 128 x 224 x 224
D

of Instance Feature Extractor (IFE), we replace each convolution layer with the novel
layer proposed in Section 3.3 of the main document. However, other than the usage of
the (Mask-)Informed Convolution concept, it has the same exact structure as other FEs.
The output of Global Feature Extractor (GFE), Local Feature Extractor (LFE) and IFE
is denoted by Fg, F'r, and F respectively.

We initialized the weights of the FEs with the pretrained model found in PyTorch
framework [6] that is initially trained for classification problem with the ImageNet
dataset [1]. For IFE, we initialize the weights of all Informed Convolution layers with
their corresponding ‘normal’ convolution layers found in the pretrained model. The
reason is that a ‘normal’ convolution layer is a special case of the Informed Convolution
layer and it can be a good initialization for the weights of IFE. However, we found that
the difference in performance is insignificant between with and without the pretrained
initialization of the IFE.

S.2.2 Object Descriptor

The Object Descriptor, Table S.1, is depicted in Fig. 3 in the paper. It has two input
branches for the category embedding and the binary mask of the object. The category
embedding branch D.C consists of two fully connected layers while the binary mask
branch D.M consists of two 2D-Convolution layers. The output of D.C' is broadcasted
and multiplied with D.M as in Eq. (5).

We have investigated the usage of the cropped image I~ in the generation of the
description D. However, we noticed that it actually increases the complexity while not
increasing the performance. Since all important features are extracted from /&I by
our strong FEs. The object descriptor needs only to ‘learn’ where to give attention.
This can mainly be obtained by information about 1) where the object is located in the
input image I/~ which is provided through the binary mask M, and 2) what category
this object belongs to which is provided by the self-learned category embedding c.

S.2.3 Gating Mechanism

We have three gates G, G, &G for the three different extracted features Fg, F & F
and their corresponding outputs are Ag, A& Aj, respectively. Table S.2 shows the
architecture of each gate. The input is D (the description of the object), which is
the output of D (the Object Descriptor). We use a final Sigmoid activation function to
ensure that the output range of the learned attention is between 0 and 1. This guarantees
the numerical stability of the network, as later the produced values Ag, A& Ar are

Table S.2: Structure of Gates (G)

Layer Name Gg.1 g2 g3
Input g.1 g2
3 x 3 conv(128,64)/2 3 x 3 conv(64, 32)/2 3 % 3 conv(32,3)/2
Structure batch norm batch norm batch norm
relu relu sigmoid
Output 64 x 112 x 112 32 x 56 x 56 3 x 28 x 28
Ag, AL or A[
Table S.3: Structure of Interpreter (Z)
Layer Name T.E.1 T.E2 Z.H;.1 T.H;.2
Input fr ZE.1 ZE2 Z.H;.1
1 | 1 |4 |4 1 |4
Structure Linear(768,512) Linear(512, 256) Linear(256, 128) [Linear(128, 620)]
relu softmax relu
Output 512 256 128 620

a

multiplied with the features Fiz, Fr.&Fr. Without bounding the range of the learned
attention maps, the values may explode.

S.2.4 Interpreter

The interpreter, Table S.3, consists of two stages as shown in Fig. 4 of the main docu-
ment. The first part Z.E reduces the length of the feature vector to 256. Then for each
category, we have its own Z.H;, Vi € {1,2, - - ¢}, where c is the number of categories.
The output length in the case of VAW is 620 as the set of attributes is fixed over all
categories. However, the output length in the case of CAR varies depending on the set
of possible attributes of each category. For example, the output length for a Pedestrian
object would be 38. While the output length for a Mid-to-Large Vehicle is 41. Please
refer to Sections S.3 and 4 for more details and discussion about the datasets.

S.2.5 Category Estimator

The first column of Table S.4 shows the structure of the category estimator, which is
a single fully connected layer with an output length equal to the number of categories.

Table S.4: Structure of Category Estimator (C) and local and intrinsic attributes esti-
mators (LAE & TAE)

Layer Name C.1 LAE.1 IAE.1
Input Fy, Fr, Fr
Structure [Linear(768,2260)| || [Linear(768,620)] || [Linear(768,620)]
Output 2260 620 620

¢ a a;

Table S.5: Structure of Multi-Object Detection Head (MODH)

Layer Name MODH.1 MODH.2 MODH.3
Input Fa MODH.1 MODH.2
3 x 3 conv(768,512) 3 x 3 conv(512,256) 3 x 3 conv(256, 2265)
Structure batch norm batch norm batch norm
relu relu ¥
Output 512 x 28 x 28 256 x 28 x 28 2265 x 28 x 28
O¢g

Table S.6: Structure of Mask Estimator (M)

Layer Name M1 M2 M3 M4
Input Fr, M1 M2 M3
5
3 x 3 conv(768,256) 3 x 3 conv(256, 128) 3 x 3 conv(128,64) 3 % 3 conv(64, 1)
batch norm batch norm batch norm
Structure batch norm
relu relu relu siemoid
upsample(2) upsample(2) upsample(2) S8
Output 256 x 56 x 56 128 x 112 x 112 64 x 224 x 224 1 x 224 x 224
M

Ideally, the Category Estimator should produce a one-hot encoding representation of
the category of the object. However, practically it produces a Probability Mass Func-
tion (PMF) of the object’s category. If the PMF has two or more peaks, then that is
primarily due to the visual similarity between their corresponding categories. In other
words, the generated embedding captures visual similarities between different cate-
gories based on the shape of the object of interest. As we have argued in Table 5, this
is better than a fixed pretrained word embedding such as GloVe [7] in Pham et al. [8].

S.2.6 Multi-Object Detection Head

The multi-object-detection head (MODH), Table S.5, detects different objects in the
whole given image. The output should not change by using different objects in the
same image as the input of GFE is the whole input image I. The input to the MODH is
the upsampled and concatenated features (Fz) Eq. (1). The output has 2265 channels in
case of using VAW dataset and 17 in case of using CAR, since the number of categories
is different in each dataset. The final output passes by a custom activation function y
that splits the channels of the input features into sets and passes each set to a different
activation function depending on the purpose of this set. is defined as follows. For
the first channel that represents the confidence, the activation is a Sigmoid as well
as for the bounding box center coordinates. On the other hand, the activation is an
exponential for the dimensions of the bounding box (to ensure non-negativity) while it
is a softmax for the multi-category channels (to ensure PMF axioms — non-negativity
and summation to one).

S.2.7 Mask Estimator

The Mask Estimator (M) is a temporary decoder that takes the output features of LFE
(Fr) Eq. (2). TIts structure is depicted in Table S.6. The output is a single channel
representing the estimation of the binary mask. The output is restricted to be between
0 and 1 through a final Sigmoid layer — one indicates the pixel belongs to the object
while zero indicates that this pixel does not belong to the object of interest.

S.2.8 Attribute Predictors

The second and third column of Table S.4 shows the structure of the local and intrinsic
temporary decoders respectively. They both have the same structure, however, the
inputs and outputs of each are distinct. In the case of LAE, the inputs and outputs are
Fr, Eq. (2) and &; respectively. While for IAE, the inputs and outputs are F; Eq. (3)
and a; respectively.

S.3 Discussion of Datasets

In Section 4, we have trained GlideNet using two new and challenging datasets VAW
[8] and CAR [5]. The following are a few of the reasons why these two datasets were
chosen in particular:

1. the number and diversity of categories in both datasets are high enough to eval-
uate the validity and effectiveness of the proposed multi-category architecture.

2. VAW has already been used in attributes prediction as in [8].

3. CAR has a complex taxonomy with different sets of attributes depending on
different categories. Furthermore, unlike VAW, the attributes in CAR are not
binary or ternary. This makes CAR more challenging as well as adds flavor to
the comparison of GlideNet with other methods.

Figs. S.1 and S.2 show examples from the original papers of both datasets. CAR!
focuses on the application of attributes prediction for self-driving vehicles. Therefore,
CAR focus on attributes such as the activity of a pedestrian, visibility of a vehicle, the
color of a traffic light, the speed limit of a traffic sign. On the other hand, VAW? is
pretty generic and has a wider variety of categories but it has the same set of attributes
for all. Most of those attributes are unlabeled; since the majority of them are not
meaningful to a certain category. All attributes in VAW can take one of three different
labels; positive, negative, and unlabeled.

S.3.1 Objects with low pixel-count:

Fig. S.3 depicts two examples that demonstrate the importance of IFE. Let’s look at
the first example (a), (b) & (c), a narrow vertical pole. To predict its attributes without

TAn APl is provided at ht tps://github.com/kareem-metwaly/CAR-APT
2The authors provide the dataset through their website http: //vawdataset .com/

https://github.com/kareem-metwaly/CAR-API
http://vawdataset.com/

‘ehicle[Typ ycle]

e Visibility: 8196,to}100%isvisible;

e Form:Sedan J

\VehiclejType: Other; ei—
\Vehicle Llight-Status: Off}
\Vehicle Direction:Back

\VehicleVisibility:8196to}1 009%isyisible]
\Vehicle Form::Bus)

\VehiclejType:Other;
\Vehicle/l'ight-Status:Off;

Vehicle Direction:

——
-

> g

% o

:161% to 80% is visible
Vehicle Form: Hatchback
Is the vehicle towir:\g or being towed: Towing
Vehicle Type: Othelr
Vehicle Light StatuI On
Vehicle Status: Stopped
Vehicle Direction: Back

Figure S.1: Examples of the CAR Dataset. Figure from the original paper [5].

Positive
Pink, Leaning,
Floral

Brown, Wood
Curved, Clean

Negative X INegative X
\White, Metallic, Yellow, Held,
Square Dried
Unlabeled Unlabeled

Flower [Bright, Cut, Light |
Red, Patterned, . |:

Table Large, Flat, ;
Painted, Indoors...|:

Positive v
Yellow, Round, Brown, Yellow,
Ceramic, Full \Colorful
INegative X INegative ¥
\White, Square, IChocolate,
Glass, Empty (Circular, Burnt
Unlabeled . Unlabeled
Plate |red. colorful, Cookie hie, Dark, 8ig
Shallow, Dirty, ... Frosted, ...

(@) Tl;f{ pole is the ob- (d) The floor is the object of
Ject of interest (b) Cropped (c) Stretched interest

Figure S.3: Objects that have benefited from IFE

using IFE, we can either crop while keeping the aspect ratio (no distortion) or stretch it
(distorting the image). And both techniques influence the prediction of other attributes.
For example, image (c) no longer looks like a pole. Additionally, (d) displays another
example (from the VAW dataset) where cropping and stretching are difficult due to
the toilet being surrounded by the floor. IFE would easily help these cases, allowing
information to flow only from pixels of interest.

S.4 Experimental Setup

In our Experiments and Results Section 4, we have compared GlideNet with four dif-
ferent state-of-the-art methods [2, 4, 9, 8]. We also performed ablation study to prove
the importance and effectiveness of the different FEs as well as the novel convolution
layer — Informed Convolution.

In our training, we have trained the network at Stage I for 15 epochs, then we
switched to Stage II for 10 epochs. We have noticed that changing the number of

epochs slightly for each stage did not have a noticeable change in performance. The
temporary decoders are removed during Stage Il and inference stage; they are only used
in Stage I to guide the FEs for their supposed objectives. As mentioned in Section 4,
we set the values of the hyperparameters of the training loss function to be as follow:
Agpo = 1, Agp = 0.01, A\gq = 0.5, Age = 0.5, A\jy, = 0.1, Xje = 0.01, Nyq = 1,
Aie = 1 and Ao = 0.01. We have attempted training with different values. What
we noticed the most is that it is important to keep the values of Agp, A\ic& A2 lower
than other values significantly. Otherwise the training diverges and the training focuses
more on estimating the correct category than actually ensuring decent performance for
other decoders.

We have developed our code based on the PyTorch framework [6]. We used GPUs
to speed up the training, specifically, we used NVIDIA Tesla V100 ®GPUs. We dis-
tributed the code over 4 GPUs to speed up the training. The training time was less
than one day and the average inference time per an entire image was ~ 0.05 second.
This is a very reasonable time for a real-time application. Typically, it is not required
to predict attributes with a frequency greater than 20 Hz in most applications such as
autonomous vehicles. For an average speed of 60 MPH (88 feet/second), a vehicle will
on average predict attributes of the scene every 4 to 5 feet (88/20). This is a small trav-
eling distance for the scene to change significantly. In other words, 20 Hz is sufficient
to estimate attributes of all objects in a scene and make fast real-time decisions based
on the predicted attributes. It is worth noting that this time can significantly be reduced
per scene if we kept the produced General Features Fz from one instance to another
in the same scene (image); as they all share the same scene. In addition, the time can
be reduced by tracking objects with predicted attributes. This will help in decreasing
the number of objects that require attributes prediction in each scene, which in turn
decreases the computation time per scene.

References

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 248-255, 2009. 2

[2] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a Deep ConvNet for Multi-
Label Classification With Partial Labels. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 647-657, Long Beach, CA, USA, June 2019. IEEE.
7

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 1

[4] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, and Xinlei Chen. In
defense of grid features for visual question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10267-10276, 2020. 7

[5] Kareem Metwaly, Aerin Kim, Elliot Branson, and Vishal Monga. CAR - cityscapes at-
tributes recognition a multi-category attributes dataset for autonomous vehicles. https:
//arxiv.org/abs/2111.08243,2021. 5,6

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative

https://arxiv.org/abs/2111.08243
https://arxiv.org/abs/2111.08243

(7]

(8]

(9]

style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026-8037, 2019. 2, 8

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1532-1543, Doha, Qatar, Oct. 2014. Association
for Computational Linguistics. 4

Khoi Pham, Kushal Kafle, Zhe Lin, Zhihong Ding, Scott Cohen, Quan Tran, and Abhi-
nav Shrivastava. Learning to predict visual attributes in the wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13018-13028,
2021. 4,5,7

Nikolaos Sarafianos, Xiang Xu, and Ioannis A Kakadiaris. Deep imbalanced attribute clas-
sification using visual attention aggregation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 680-697, 2018. 7

