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Abstract

Image dehazing is one of the most challenging imaging
inverse problems. Although deep learning methods pro-
duce compelling results, one of the most crucial practical
challenge is that of non-homogeneous haze, which remains
an open problem. To address this challenge, we propose
3 models that are inspired by ensemble techniques. First,
we propose a DenseNet based single-encoder four-decoders
structure denoted as EDN-3J, wherein among the four de-
coders, three of them output estimates of dehazed images
(J1, J2, J3) that are then weighted and combined via weight
maps learned by the fourth decoder. In our second model
called EDN-AT, the single-encoder four-decoders struc-
ture is maintained while three decoders are transformed
to jointly estimate two physical inverse haze models that
share a common transmission map t with two distinct ambi-
ent light maps (A1,A2). The two inverse haze models are
then weighted and combined for the final dehazed image.
To endow two sub-models flexibility and to induce capabil-
ity of modeling non-homogeneous haze, we apply attention
masks to ambient lights. Both the weight maps and atten-
tion maps are generated from the fourth decoder. Finally, in
contrast to the above two ensemble models, we propose an
encoder-decoder-U-net structure called EDN-EDU, which
is a sequential hierarchical ensemble of two different de-
hazing networks with different modeling capacities. Experi-
ments performed on challenging benchmark image datasets
of NTIRE’20 and NTIRE’19 demonstrate that the proposed
models outperform many state-of-the-art methods and this
fact is particularly demonstrated in the NTIRE-2020 con-
test where the EDN-AT model achieves the best result in the
sense of the perceptual quality metric LPIPS.

1. Introduction
Dehazing is an important image processing task, which

aims at recovering the scene information from images that
are corrupted by dust, mist, smoke and other atmospheric
particles that cause deflection of light from the objects. Due
to the presence of haze, the visual quality of images is de-

graded drastically and the scene information will be lost.
With the scene information being effected, crucial computer
vision tasks such as object detection and recognition [1] that
are critical to many emerging real-world applications such
as autonomous driving, navigation systems, will be severely
impacted. Hence, the demand for robust dehazing algo-
rithms has been boosted in recent years.

Over the past decades, image dehazing has been an ac-
tive research field [2, 3, 4, 5, 6, 4, 7, 8, 9] where the majority
of work can be categorized into two classes: multi-image
dehazing and single image dehazing. Constrained by the
expressive capacity of models, many of early research work
focused on adopting different kinds of fusion techniques to
combine information from multiple images [10, 11]. How-
ever, in many scenarios, multiple images of the same scene
under various environmental conditions are not available.
Hence, single image dehazing has gradually become the
more desirable option.

Most of the single image dehazing algorithms are gov-
erned by the physical haze model [12] shown below:

I = J · t+A · (1− t) (1)
where · represents element-wise multiplication, I is the
hazy image, A is the ambient light intensity and t is trans-
mission map. t indicates a fraction of radiance of true scene
J transmitted to the camera sensor. Thus, it is physically
constrained within [0,1]. Estimation from the inverse of the
haze model has shown advantages since it reflects the phys-
ical formation of the haze scene. The main challenge to
single image dehazing is the great demand for modeling ca-
pacity since it is a heavily ill-posed inverse problem. Deep
Learning (DL) techniques owing to their rich modeling ca-
pacity – have shown compelling performance across a wide
array of imaging and vision problems such as image super-
resolution [13, 14, 15], deblurring [16] and inpainting [17].
However, a downside of its tremendous increased flexibility
is that its parameters are sensitive to the specifics of training
data since they are mostly trained via stochastic training al-
gorithms like SGD [18]. Hence, adequate amounts of train-
ing pairs {I,J} are required to ensure the training dataset
can represent the true distribution of general data. Other-
wise, the learned models exhibit high variance and may not



be able to generalize well.
Furthermore, in many practical scenarios, the haze is not

uniform across a given image, thereby induces more chal-
lenges to the problem. In such cases, a single haze model
might not be capable enough for modeling different haze
densities in an image. These challenges combined with the
already existing ill-posed nature of the problem may further
hinder the performance of the existing deep-learning mod-
els by increasing the variance of the model. The NTIRE-
2020 Dehazing Challenge [19] aims to tackle these practi-
cal issues by providing a very challenging dataset that has
images with varying haze density.

It is a well-known fact that ensemble learning [20] has
proven to be effective in reducing the variance of the neu-
ral networks. The performance of an ensemble model can
be better than the performance of the best single network
used in isolation [21]. Inspired by this fact, we propose
the Ensemble Dehazing Networks to tackle the challenge of
non-homogeneous haze. As a starting point, we first pro-
pose a simple model called EDN-3J, which consists of one
shared Dense encoder and four Dense decoders. Among
decoders, three of them output distinct Ji, i ∈ {1, 2, 3},
which are learned using different reconstruction loss func-
tions. A crucial step in combining these outputs is to effec-
tively weigh/combine each Ji. Moreover, since the images
are corrupted by non-homogeneous haze, each pixel of each
Ji should be assigned a learnable weight. Keeping this fact
in mind, we use the fourth decoder to generate the weight
maps and to combine the 3 outputs effectively.

Although EDN-3J addresses the non-homogeneous chal-
lenge to a certain extent, it does not utilize the physical haze
model which is crucial to obtain reliable images. Therefore,
we propose another ensemble network based on the physi-
cal haze model, denoted as EDN-AT. Similar to EDN-3J, it
consists of a common Dense encoder and 4 Dense decoders.
Out of these 4 decoders, 2 of them output different ambient
light maps Ai, i ∈ {1, 2} and the third decoder outputs a
common transmission map t. The motivation behind this
design is that the haze is primarily influenced by the atmo-
spheric light A. Hence we restrict the transmission map to
be the same for both haze models and naturally drive two
ambient light maps to focus on haze of different properties
such as dense haze and light haze. To further facilitate each
Ai to represent the ambient light in different haze scene, an
attention mask m of the same size of ambient light map’s
is generated by the fourth decoder. m and 1−m are mul-
tiplied to A1,A2 accordingly. Eventually, J1 and J2 are
weighted by weight map w from another output channel in
the decoder of the attention mask. Note that a single de-
coder is used to generate m and w.

In contrast to the previous models where we combine
different dehazing networks in a parallel fashion, we de-
velop a sequential ensemble of a Dense encoder, a Dense

decoder and a U-net (which also consists of an encoder-
decoder architecture but with a lesser model complex-
ity), denoted as EDN-EDU. By cascading encoder-decoder
dehazing networks having different modeling capacities,
EDN-EDU model shows great ability of extracting and re-
covering scene information for images corrupted by com-
plex haze.

Note that, unlike standard ensemble techniques where
different models are independently learned and combined
explicitly, in our approaches, different models share some
common properties and also independent properties. Jointly
learning with the shared encoder can boost performance of
individual decoder while diversity of decoders are crucial to
success of ensemble scheme. To obtain diversities of sub-
models, customized regularization in terms of fidelity and
perceptual quality are adopted. Through training with the
image pairs {I,J}, three models have shown good perfor-
mance on the experiments performed on challenging bench-
mark image datasets of NTIRE-2020 [22] and NTIRE-2019
[23]. Based on PSNR, EDN-EDU model ranks 7th in the
NTIRE-2020 Dehazing Challenge, while being 7th in the
SSIM metric. More importantly our EDN-AT ranks 1st and
EDN-EDU ranks 4th on LPIPS, a metric which is shown to
be more consistent with human perception as compared to
PSNR and SSIM [24].

2. Related Work
Deep learning based methods have shown tremendous

promise for recovering clean images from very dense haze.
Recently, in [25], the authors proposed a deep network to
estimate individual color channels followed by a subsequent
refinement block to enhance the final synthesized RGB im-
age. Various methods have been proposed to estimate t
and A to reconstruct J. For example, Yang et al. [26] un-
rolled an iterative algorithm into a deep learning framework
to estimate the dark channel and transmission priors. Yuan
et al. [27] combined Network-in-Network with multi-scale
CNN to estimate t. Ren et al. [28] also proposed a multi-
scale deep neural network to estimate t. These methods are
all limited by their structures since only transmission map
t is estimated through CNN frameworks. To incorporate
further essential information, Li et al. [29] proposed a de-
hazing network where both t and A are encoded into one
unit. Recently, in Guo et al.’s work [30], they introduced
a shared-encoder multi-decoders architecture to be trained
jointly to estimate t,A which is proven to be very effective
and achieved top place in NTIRE-2019 Dehazing Contest.

With the promise of Generative Adversarial Networks
(GANs) [31] in many computer vision tasks, they have also
exhibited their advantages in image dehazing tasks. In [32],
the authors developed a discriminator to judge whether the
corresponding dehazed image and the estimated transmis-
sion map are real or fake. In [33], the authors proposed a



framework where discriminator guides the generator to cre-
ate realistic images on a coarse scale while the enhancer
following the generator produces realistic images on a fine
scale.

Semi-supervised learning and unsupervised learning for
training dehazing models have also been explored. In [34],
the authors presented a semi-supervised learning algorithm
in which the deep CNN has a supervised learning branch
and an unsupervised learning branch. In [35], a cycle GAN
is trained through unsupervised learning to remove the re-
liance on degraded and ground-truth image pairs.

Although all these methods have offered significant prac-
tical benefits for image dehazing, most of these methods
were developed based on the assumption of the uniform
haze, which may not be valid in many practical scenarios.
Hence, in our proposed work, we tackle this issue by de-
signing shared ensemble models wherein sub-models are
trained partially jointly and are combined effectively to gain
the benefits of different dehazing networks. This strategy
enables our models to offer better performance on the non-
homogeneous hazy images as well as uniform hazy images.

3. Ensemble Dehazing Network
One of the advantages of ensemble techniques is the re-

duced variance of overall estimated models, which is par-
ticularly beneficial in the case of non-homogeneous haze.
In non-homogeneous dehazing problem, mappings from
scenes of multiple haze level to haze-free scene are learned.
Those non-linear mappings have distinct properties and
therefore ideally are supposed to be modeled separately
for avoiding confusion to the neural network. Inspired by
this observation, we focus on ensembling multiple dehaz-
ing networks and facilitating them to be expert at different
aspects of non-homogeneous haze. However, since sub-
models in ensemble model are always less capable due to
smaller structure, the number of distinct sub-models is usu-
ally required to be large to ensure considerable improve-
ment. Since it would make the ensemble model cumber-
some, we aim to address this issue by boosting the indi-
vidual sub-model’s capacity and at the same time main-
taining their differences. In this way, we can benefit from
the ensemble technique and avoid suffering from huge ar-
chitecture. We observed that information sharing between
two distinct sub-models is beneficial to improvement of in-
dividual model. Based on this observation, first we pro-
pose EDN-3J and EDN-AT which focus on ensembling sub-
models sharing a common encoder. Second, we propose
EDN-EDU which focus on ensembling two dehazing net-
works sequentially to let them recover information hierar-
chically and be trained jointly. In this section, we would
illustrate details of the proposed architectures of three en-
semble dehazing networks and strategies we adopted for
optimizing each model.

3.1. Network Building Blocks

In our proposed models, the main building blocks are
encoder and decoders, which are based on Densely Con-
nected Network(DCN) [36] because of its compelling ad-
vantages such as the alleviation of vanishing-gradient prob-
lem, strengthening of features propagation and features
reuse. The details of architectures of EDN-3J, EDN-AT,
and EDN-EDU are shown below:

1) Encoder: We use pre-trained blocks that have been
used for image classification tasks in [36] for the encoder,
since they have already been trained on a vast amount of
natural images and possess feature extracting capacity. The
encoder consists of a base block, 4 Dense blocks(DB), 4
transition blocks and a residual block. Details are shown in
Table. 1. The description of blocks in the table includes 4
items:
• Block: name of the current block.
• Input: name of the blocks which outputs the input of

the current block.
• Structure: operating layers which might be convolu-

tion layers with kernel size and number of layers spec-
ified, max- or average-pooling of specific size, fully
connected layers, etc.
• Output: h × w × c, where h,w, c are dimensions of

height, width and channels of current block’s output.

Table 1: Encoder Structure

Block Base.0 Dense.1 Trans.1 Dense.2
Input input patch/image Base.1 Dense.1 Trans.1

Structure
[

7× 7 conv.
3× 3 max-pool

] [
1× 1 conv.
3× 3 conv.

]
× 6

[
1× 1 conv.

2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 12

Output 64× 64× 64 64× 64× 256 32× 32× 128 32× 32× 512
Block Trans.2 Dense.3 Trans.3 Dense.4
Input Dense.2 Trans.2 Dense.3 Trans.3

Structure
[

1× 1 conv.
2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 24

[
1× 1 conv.

2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 12

Output 16× 16× 256 16× 16× 1024 8× 8× 512 8× 8× 768
Block Trans.4 Res.4
Input Dense.4 Trans.4

Structure
[

1× 1 conv.
2× 2 avg-pool

] [
3× 3 conv.
3× 3 conv.

]
× 2

Output 16× 16× 128 16× 16× 128

2) Decoder: the decoders are trained from scratch with-
out specific initialization. The structure of decoder is simi-
lar to that of encoder shown in Table. 2, which consists of
4 Dense blocks, corresponding transition blocks, a residual
block and several convolution layers as refinement blocks
at the end of the decoder. In decoders, 3 channel attention
blocks are embedded to reinforce the informative channels
and to suppress less useful channels of feature maps. The
structures of channel attention module and residual block
are illustrated in Fig. 2 and Fig. 3. It is observed that
the models have relatively stable behaviour after training
phase and avoid severe over-fitting with channel attention
modules incorporated. The number of channels in the out-
put layer, denoted as X, depends on the functionality of de-
coder, which is shown in Table. 3



Table 2: Decoder Structure

Block CA.4 Dense.5 Trans.5 Res.5
Input [Res.4, Trans.2] CA.4 Dense.5 Trans.5

Structure
[
fully connected

] [
batch norm
3× 3 conv.

]
× 7

[
1× 1 conv.
upsample 2

] [
3× 3 conv.
3× 3 conv.

]
× 2

Output 16× 16× 128 16× 16× 640 32× 32× 128 32× 32× 128
Block CA.5 Dense.6 Trans.6 Res.6
Input [Trans.1, Res.5] CA.5 Dense.6 Trans.6

Structure
[
fully connected

] [
batch norm
3× 3 conv.

]
× 7

[
1× 1 conv.
upsample 2

] [
3× 3 conv.
3× 3 conv.

]
× 2

Output 32× 32× 128 32× 32× 384 128× 128× 64 64× 64× 64
Block Dense.7 Trans.7 Res.7 Dense.8
Input Res.6 Dense.7 Trans.7 Res.7

Structure
[

batch norm
3× 3 conv.

]
× 7

[
1× 1 conv.
upsample 2

] [
3× 3 conv.
3× 3 conv.

]
× 2

[
batch norm
3× 3 conv.

]
× 7

Output 64× 64× 64 64× 64× 128 128× 128× 32 128× 128× 32
Block Trans.8 Res.8 CA.8 Refine.9
Input Dense.8 Trans.8 Res.8 CA.8

Structure
[
1× 1 conv.
upsample 2

] [
3× 3 conv.
3× 3 conv.

]
× 2

[
fully connected

] 
3× 3 conv

32× 32 avg-pool
1× 1 conv.
upsample


Output 256× 256× 16 256× 256× 16 256× 256× 20 256× 256× 1
Block Refine.10 Refine.11 Refine.12 Refine.13
Input Refine.9 Refine.9 Refine.12 [Refine.9, .10, .11, .12]

Structure

16× 16 avg-pool
1× 1 conv.
upsample

 8× 8 avg-pool
1× 1 conv.
upsample

 4× 4 avg-pool
1× 1 conv.
upsample

 3× 3 conv.

Output 256× 256× 1 256× 256× 20 256× 256× 1 256× 256× X

Table 3: Number of Channels in Output Layers of Decoders

EDN-3J decoder.J1 decoder.J2 decoder.J3 decoder.W
X 3 3 3 1

EDN-AT decoder.A1 decoder.A2 decoder.W decoder.T
X 3 3 2 1

3) U-net: the U-net [37] structure is shown in Table. 4.
In total, it consists of 15 convolution layers.

Table 4: U-net Structure

Block unet.down unet.conv unet.up unet.out
Input Refine.14 unet.down unet.conv unet.out

Structure

3× 3 conv.
3× 3 conv.
max-pool

× 3

[
3× 3 conv.
3× 3 conv.

] 3× 3 conv.
3× 3 conv.
max-pool

× 3
[
3× 3 conv.

]
Output 32× 32× 256 32× 32× 512 128× 128× 64 256× 256× 3

Figure 2: Structure of channel attention module(CA.4,
CA.5, CA.8 in Table. 2). It pools channel information from
multi-channel feature map of last layer and passes it into a
2-layer fully-connected network of which output is recov-
ered to multiply with skipped feature map.

Figure 3: Structure of residual block(Res.4, Res.5, Res.6,
Res.7, Res.8 in Table. 1 and 2). It adds skip connection
with outputs of four convolution layers.

3.2. EDN-3J Model

The EDN-3J model utilizes the encoder in Table. 1
which is initialized as mentioned above. There are 4 de-
coders denoted as decoder.J1, decoder.J2, decoder.J3 and
decoder.W. Decoder.J’s, which are constructed based on
Table. 2, outputs dehazed images J1,J2, J3 which are
learned using different reconstruction loss. Aiming to find
the best version of combination, decoder.W generates 3
weight maps by the 3-channel output layer. Elements of
each weight map are constrained between 0 and 1 and are
restricted to have sum to be 1. The formulation of final out-
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put is shown in Eq. 2:
Ĵ = w1 · Ĵ1 +w2 · Ĵ2 +w3 · Ĵ3 (2)

where · represents element-wise multiplication, Ĵi :=

fJi
(I) and ŵi :=

fwi
(I)

fw1
(I)+fw2

(I)+fw3
(I) for i = 1, 2, 3 and

fwi
∈ [0, 1]. The overall architecture is illustrated in Fig. 1.

The joint training of encoder and decoders is accom-
plished by minimizing the following objective function:

L = ‖Ĵ1 − J‖22+λ1‖Ĵ2 − J‖1+λ2LSSIM (Ĵ3,J)

+λ3‖Ĵ− J‖22 + λ4Lvgg(Ĵ,J)
(3)

where λi, i ∈ {1, 2, 3, 4} are parameters for weighing
different loss terms, J is ground truth, LSSIM (x, y) :=
1 − SSIM(x, y) is dissimilarity measurement based on
Structural Similarity Index Measure(SSIM) [38] and Lvgg

is a perceptual loss that measures high-level differences,
like contents and style discrepancies between images alike.
Lvgg is calculated by inputting J and Ĵ into a pre-trained
VGG16 network [39] and measuring their output features’
difference in the sense of L2-norm given by:

Lvgg =
3∑

i=1

‖gi(Ĵ)− gi(J)‖22 (4)

where the gi(·) represents the operator of feature extraction
conducted by VGG16 model.

In the EDN-3J model, we are combining shared sub-
models that are learned under different reconstruction loss
functions. This offers a great benefit in the challenging sce-
nario of non-homogeneous haze, since each loss function
has certain advantages thereby motivates each sub-model

to have distinct characteristics. Weight maps are generated
and used to ensure that outputs of sub-models are combined
effectively for the best version of final output.

3.3. EDN-AT Model

Although the EDN-3J model shows promise in dehaz-
ing non-homogeneous corrupted images, lack of knowledge
about physical haze model would make it inferior. If we can
estimate the physical parameters, the clean images can be
recovered by:

Ĵ =
I− (1− t̂)Â

t̂
(5)

To explore the merits of the physical haze model and also
the ensemble scheme, we propose EDN-AT which consists
of one shared encoder constructed and initialized in a simi-
lar fashion as EDN-3J.

Four decoders are connected to the encoder in a parallel
way, denoted as decoder.T, decoder.A1, decoder.A2 and de-
coder.W. The dehazed image is estimated by combining the
outputs of two sub-models:

Ĵ(x) = ŵ · Ĵ1(x) + (1− ŵ) · Ĵ2(x) (6)

where Ĵ1, Ĵ2 are sub-models’ outputs, which are estimated
through inversion of physical haze model. In addition to the
parameters A1,A2, t in normal haze model, we embedded
a novel parameter: attention map M to further enable two
sub-models to focus on distinct aspects. The formation of
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Figure 5: The architecture of the proposed ‘EDN-EDU’ model, which consists of a Dense encoder, Dense decoder, and a
U-net.

Ĵ1, Ĵ2 is shown as follows:

Ĵ1(x) =
I(x)− Â1(x) · M̂(x) · (1− t̂(x))

t̂(x)
(7)

Ĵ2(x) =
I(x)− Â2(x) · (1− M̂(x)) · (1− t̂(x))

t̂(x)
(8)

where I is hazy image, t̂ is common transmission map esti-
mated by decoder.T, Â1, Â2 are ambient light intensities in
two haze models estimated by decoder.A1 and decoder.A2,
ŵ and M̂ are weight map and attention mask generated by
2-channel output layer from decoder.W.

The motivation here is that since the haze is primarily
governed by the atmospheric light, we obtain two different
ambient light maps A′s: one for reconstructing dense hazy
regions and one for light hazy regions. With the help of
multiplication of attention map m and its complementary
part 1−m, the models would gain more expressing power
to regress the non-linear mapping from dense hazy scene to
haze-free scene and corresponding mapping of non-dense
haze scene. The transmission map t remains the same for
both the models as we assume t in both model depends on
the pixel locations which do not vary. The overall architec-
ture of EDN-AT is illustrated in Fig. 4.

The training of EDN-AT is performed by minimizing the
following loss function:

L = ‖Ĵ1 − J‖22 + λ1‖Ĵ2 − J‖1+ λ2‖Ĵ− J‖22
+ λ3 LSSIM (Ĵ,J) + λ4Lvgg(Ĵ,J)

(9)

where λi, i ∈ {1, 2, 3, 4} are parameters that weigh each
term, J is ground truth and Lvgg is perceptual loss per-
ceived by VGG16 network. The loss function contains 4
terms constraining outputs of sub-models and final output of
the model. The shared encoder structure enhance both sub-
models’ individual performance significantly. Meanwhile,
different reconstruction losses plus attention maps force the
sub-models in EDN-AT to generate diverse outputs. With
the help of learned weight maps, the final output is able to
recover images in less hazy region and estimate scenes in
dense hazy region.

3.4. EDN-EDU Model

In contrast to the ensemble dehazing networks intro-
duced above, here we demonstrate a simple but effective

cascading ensemble model of two dehazing blocks. In this
model, a DenseNet based encoder-decoder block and a U-
net based block are cascaded to form a direct mapping
from hazy images to clean images, hence called EDN-EDU
model. The sequential ensemble of an encoder-decoder and
a U-net enables the overall model to recover scene infor-
mation in hazy images hierarchically, thereby enhancing its
capacity of feature extraction and recovery. The detailed
structure of encoder, decoder and U-net block are shown in
Table. 1, 2 and 4. The architecture of the cascaded model
is shown in Fig. 5. The training of EDN-EDU is performed
by minimizing the following loss function:

L = ‖Ĵ1 − J‖22 + λ1‖Ĵ− J‖1 + λ2‖Ĵ− J‖22
+λ3 LSSIM (Ĵ,J) + λ4Lvgg(Ĵ,J)

(10)

where Ĵ1 is output of dense network and Ĵ is the output of
U-net which also happens to to be the output of EDN-EDU
model, Lvgg and LSSIM are defined in the same way as
those in EDN-3J and EDN-AT are defined.

4. Experiments
In this section we present the procedures for pre-

processing training datasets and setup for the experiments.

4.1. Datasets

The EDN-3J, EDN-AT and EDN-EDN models are
trained using the NTIRE-2020 non-homogeneous Dehaz-
ing dataset [22]. The dataset contains haze-free images
and hazy images of the same scene. The training dataset
consists of 45 pairs of hazy images and their correspond-
ing haze-free ground truth. To enable the networks to
have a better generalizing ability, we also include the out-
door images from the NTIRE-2018 Dehazing dataset [3]
and NTIRE-2019 Dehazing dataset [23] for training. Both
datasets contain images with homogeneous haze while haze
in the NTIRE-2019 dataset has a higher density. To obtain
a sizeable amount of training data, we extract patches of
size 256 × 256 from these images. To further extend our
training dataset, the following augmentation techniques are
used: 1) horizontal flip, rotation by 90◦, 180◦ and 270◦; 2)
the original images are resized to 256 × 256 and then the
same augmentation techniques are applied to them and are
included in the training dataset.



4.2. Training Setup

We use a batch size of four for training with Adam [40]
as the optimizer. The initial learning rate is 1× 10−4 which
is reduced to its 40% after every 10 epochs. All the 3 models
are trained for 60 epochs.

5. Experimental Results
In this section we present the numerical and visual per-

formance of our proposed models, which include ablation
study and comparison with state-of-the-art methods. The
evaluation metrics used to quantify the performance are
Peak Signal-to-Noise Ratio(PSNR), Structural Similarity
Index Measure(SSIM) and Learned Perceptual Image Patch
Similarity (LPIPS) metric. LPIPS is a novel metric that
measures perceptual similarity using deep features of two
images extracted by some well-known deep learning frame-
works. The lower LPIPS score indicates a higher similarity
between two images. The evaluation datasets include the
validation dataset of NTIRE-2019 dehazing challenge and
validation dataset of NTIRE-2020 dehazing challenge. The
ground-truth images are only available for NTIRE-2019
dataset, while for NTIRE-2020 dataset, we submitted the
results on the challenge server to obtain the results of our
methods along with the competing methods.

5.1. Ablation Study

We performed an ablation study on EDN-3J and EDN-
AT models to investigate the effects of different blocks. The
quantitative results of the study are reported in Table. 5. In

Table 5: Ablation Study
Decoder Loss Terms

J1& J2 J3 L1 L2 LSSIM PSNR SSIM

EDN-3J

√ √ √ √ √
18.01 0.61√ √ √ √√
17.85 0.61√ √ √ √ √
17.82 0.60√ √ √
17.70 0.58

m t A1 A2 W PSNR SSIM

EDN-AT

√ √ √ √ √
18.52 0.63√ √ √ √
18.46 0.62√ √ √
18.27 0.60√ √
18.20 0.59

EDN-3J model, we investigated the impacts of using differ-
ent losses terms for each decoder. We noticed that assigning
distinct loss functions to different decoders have positive
effects on the models. SSIM is particularly crucial to in-
creasing the capacity of this ensemble model. Besides, we
removed the third decoder that is constrained by LSSIM

and observed the result. In EDN-AT model, we investi-
gated the case of attention mask m being removed, the case
of single physical haze model with attention mask and the
case of single physical haze model. From the ablation study
of EDN-AT, it is observed that utilizing two haze models
and combining them effectively can boost the performance.

With attention map incorporated in the model, dehazed im-
ages can be further enhanced. This study is performed on
NTIRE-2020 validation dataset.

5.2. Comparison with State-of-the-art Methods

The state-of-the-art methods used for comparisons in-
clude: TIP’15 [41], TIP’16 [28], CVPR’16 [42], ICCV’17
[29], CVPR’18 [43], CVPRW’18 [32], and CVPRW’19
[30]. Table. 6 and Table. 7 report the quantitative results
of EDN-3J, EDN-AT and EDN-EDU models on NTIRE’19
validation dataset and NTIRE’20 validation dataset. From
Figure. 6 and 7, it can be observed that images gener-
ated by EDN-AT and EDN-EDU models are visually better
compared to the state-of-the art methods. Further, quanti-
tatively EDN-AT and EDN-EDU produced the best PSNR
values compared to the state of the alternatives on both the
datasets. Among the variants of our own methods, EDN-
AT and EDN-EDU produced the best results compared to
EDN-3J. This is due to the facts that EDN-AT has knowl-
edge of physical model imbibed into it and EDN-EDU
has a sequential hierarchical structure with stronger fea-
ture extracting-recovering capacity thereby leading to better
performance. The NTIRE-2019 validation dataset has uni-
form haze which is a special case of non-homogenous haze.
From the results of comparisons, the issue of uniform haze
is also effectively addressed by our EDN models.

Table 6: The average PSNR/SSIM of different methods
over NTIRE-2019 validation dataset.

Team Contest Method PSNR SSIM

Other Methods

TIP15[41] 13.29 0.38
TIP16[28] 14.56 0.42
CVPR16[42] 15.98 0.45
ICCV17[29] 15.67 0.51
CVPR18[43] 16.30 0.48
CVPRW18 [32] 15.69 0.47
CVPRW19[30] 17.15 0.52

Ours
EDN-3J 16.87 0.49
EDN-AT 17.44 0.55
EDN-EDU 17.21 0.51

Table 7: The average PSNR/SSIM of different methods
over NTIRE-2020 validation dataset.

Team Contest Method PSNR SSIM

Other Methods

TIP15 [41] 14.59 0.55
TIP16 [28] 15.94 0.57
CVPR16 [42] 16.13 0.60
ICCV17 [29] 17.97 0.62
CVPR18 [43] 17.90 0.63
CVPRW18 [32] 18.23 0.62
CVPRW19 [30] 18.45 0.64

Ours
EDN-3J 18.01 0.61
EDN-AT 18.52 0.63
EDN-EDU 18.92 0.63
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Figure 6: Visual results of different state-of-the-art methods on validation dataset of NTIRE-2019 Dehazing Competition.

TIP15 TIP16 CVPR16 ICCV17 CVPR18 CVPRW18 CVPRW19HZ EDN-AT EDN-EDU

Figure 7: Visual results of different state-of-the-art methods on validation dataset of NTIRE-2020 Dehazing Competition.
The GT images for this dataset are not provided.

NTIRE-2020 Dehazing Challenge The haze presented
in images from NTIRE-2020 Dehazing dataset is non-
homogeneous, which is a new challenge that has not been
addressed in the previous literature. In evaluation phase of
NTIRE-2020 Dehazing challenge, both fidelity and percep-
tual quality are taken into consideration.

Table 8: The average PSNR/SSIM/LPIPS of top methods
over NTIRE-2020 testing dataset.

Team Contest Method PSNR SSIM LPIPS

Top methods

method1 21.91(1) 0.69(2) 0.361
method2 21.60(2) 0.67 0.363
method3 21.41(3) 0.71(1) 0.267(2)

method4 20.85(4) 0.69(2) 0.285(3)

method5 20.11(5) 0.66 0.351
method6 20.10(6) 0.69(2) 0.330

Ours
EDN-EDU 19.76(7) 0.67(7) 0.289(4)

EDN-AT 19.22 0.66 0.266(1)

EDN-3J 18.58 0.63 0.303

Table. 8 includes the top methods from the contest in
terms of the performance of PSNR. The superscription of

the number represents the ranking of the model in terms
of the corresponding metric. As we can see from the ta-
ble, EDN-AT model ranks 1st in LPIPS while EDN-EDU
model ranks 7th in PSNR, 4th in LPIPS and 7th in SSIM
metric. These results validate the effectiveness of our pro-
posed models.

6. Conclusion
We developed ensemble dehazing networks to address the
challenge of non-homogeneous haze. We proposed three
new models that are particularly effective in recovering
clean images from non-homogeneous haze. Our EDN-AT
and EDN-EDU models achieved excellent results in the
NTIRE-2020 Dehazing Challenge. EDN-AT model benefits
from the incorporation of the physical model into the deep-
learning framework, while EDN-EDU benefits from the
rich modeling capacity of a sequential hierarchical frame-
work. As a future direction, we can extend our ensemble
framework by combining all the 3 proposed models effi-
ciently thereby increasing the performance further.
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