Introduction to scalar quantization¹

Mu Li

iPAL Group Meeting

November 12, 2010

 1 Gersho and Gray, vector quantization and signal compression

Outline

- Related definitions of quantizer
- Quantizer structure
- Measuring quantizer performance
- Uniform quantizer
- Nonuniform quantizer and compandor

Related definitions of quantizer

- **Quantization** is the heart of analog-to-digital conversion.
- **③** An N-point scalar quantizer Q is a mapping: $\mathcal{R} \mapsto \mathcal{C}$ where \mathcal{R} : real line
 - $\mathcal{C} = \{y_1, y_2, \dots, y_N\} \subset \mathcal{R}$
 - y_i : output values, $\{C\}$: codebook
- Usually assuming $y_1 < y_2 < \ldots, < y_N$
- **(**) Resolution: number of bits needed to uniquely specify the quantized value. $r = log_2 N$
- Every N point quantizer corresponds to a partition of the real line \mathcal{R} into N cells, $\{R_1, R_2, \ldots, R_N\}$, where $R_i = \{x \in \mathcal{R} : Q(x) = y_i\}$
- Overload cell: a cell that is unbounded. Granular cell: a cell that is bounded.
- A quantizer is completed described by output values $\{y_i, i = 1...N\}$ and partition cells $\{R_i, i = 1...N\}$

Related definitions of quantizer

() Regular quantizer: each cell R_i is an interval and $y_i \in (x_{i-1}, x_i)$

	x_1	22	x_3	 x_N	(-2	x_N	-1	
	- 1		-	 				•
y_1	y_1	y3			y_N	-1	y_N	

A typical graph of staircase character of a quantizer:

Sector quantizer can be viewed as a combination of an encoder, ξ , and a decoder, \mathcal{D} . If $Q(x) = y_i$, then $\xi(x) = i, \mathcal{D}(i) = u_i$

11/12/2010

iPAL Group Meeting

Information Processing and Algorithms Laboratory 🛽

Primary quantizer structure

- Indicator function $1_R(x) = 1$ if $x \in R; 0$ o.w.
- Selector function $S_i(x) = 1_{R_i}(x)$
- 3 Quantizer $Q(x) = \sum_{i=1}^{N} y_i S_i(x)$
- O Primary structure:

Secondary quantizer structure

• Indicator function $B_v(x) = 1_{(-\infty,v]}(x) = 1$ if $x \le v; 0$ o.w. Comparator:

- Selector $S_i(x) = B_{x_i}(x)\overline{B}_{x_{i-1}}(x)$
- Secondary structure:

11/12/2010

Measuring quantizer performance

2 Signal-to-Noise Ratio:
$$SNR = 10 \lg_{10} E(X^2)/D$$

Additive noise model:

- Granular noise: noise caused by bounded cells; overload noise: noise caused by unbounded cells.
- **(a)** Loading factor: $\gamma = V/\sigma$, where $V = x_{N-1}, \sigma$ is signal standard deviation.

Uniform quantizer

- Definition: $y_i y_{i-1} = \Delta, i = 1, ..., N$ and $y_i = (x_{i-1} + x_i)/2, i = 2, ..., N 1$
- Average distortion: $D = \Delta^2/12$
- SNR vs. loading fraction, which is the reciprocal of loading factor.

Nonuniform quantizer and compandor

- The spacing of quantization levels are nonuniform.
- Comparing with uniform quantizer, the dynamic range can be increased.
- Nonuniform quantizer has a general model: compandor.

Nonuniform quantizer and compander

• Informal proof:

$$P = \{(y_i, i\Delta + k), i = 1, \dots, N\}$$

$$Q = \{(x_i, i\Delta + \Delta/2 + k), i = 1, \dots, N - 1\}$$

$$G(x_i) = i\Delta + \Delta/2 + k$$

$$G(y_i) = i\Delta + k$$

Conclusion

- Quantization is the heart of analog-to-digital conversion, which is usually non-linear and doesn't have analytical expression.
- Quantizer can have structural representation which is based on selector or comparator.
- Average distortion, SNR and loading factor are three important parameters measuring a quantizer's performance.
- The uniform quantizer is the optimal quantizer that minimizes the average distortion when the input is uniformly distributed.
- Nonuniform quantizer has a general compandor model, which can have wider dynamic range than uniform quantizers.

