Scalable robust hypothesis tests
using graphical models
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Binary hypothesis testing problem
Random vector x = (1, ...,z,) € R" generated from either of two
hypotheses
Hy: x~ g(x|Hp)
Hy: x~g(x|Hp)
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Binary hypothesis testing problem
Random vector x = (1, ...,z,) € R" generated from either of two
hypotheses
Hy: x~ g(x|Hy)
Hy: x~g(x|Hp)
Given: Training sets T and 71, K samples each
Goal: Classify new sample as coming from Hy or H;

Assumptions:
Conditional densities g(x|Hp) and g(x|H1) known exactly

Samples in 7y and 77 generated i.i.d. from g(x|Hy) and g(x|H;)
respectively
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Binary hypothesis testing problem

Random vector x = (1, ...,z,) € R" generated from either of two
hypotheses

Hy: x~ g(x|Hp)
Hy: x~g(x[H)
Given: Training sets T and 71, K samples each

Goal: Classify new sample as coming from Hy or H;
Assumptions:
Conditional densities g(x|Hp) and g(x|H1) known exactly

Samples in 7y and 77 generated i.i.d. from g(x|Hy) and g(x|H;)
respectively

Likelihood ratio test (LRT)

H,
g(x|H,) >
L(x):==——=< =7 (1)
g(x[Ho) 5
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Need for robustness
Assumption of knowledge of true densities unrealistic:
9 Limited training
@ Training data acquired in the presence of noise
@ Dynamically evolving conditional densities

@ Secondary physical effects on signal not modeled
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Need for robustness

Assumption of knowledge of true densities unrealistic:

9 Limited training

@ Training data acquired in the presence of noise
@ Dynamically evolving conditional densities

@ Secondary physical effects on signal not modeled

Robust hypothesis test! (RHT):

@ Uncertainty in knowledge of true densities modeled as class of
distributions in the proximity of some nominal density

@ Minimum level of performance guaranteed for all models in the
vicinity of nominal density
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Measures of model proximity

Contamination model:

={f(x): f(x) = (1 — &) fu(x) + exh(x)}, k=0,1,

where fi(x) are the nominal densities, 0 < ¢p,¢1 < 1, and h(x) is an
unknown probability density.

Total variation:

FEV = {f(x) : drv (i, f) /|fk x)|dx < €}, k=0,1.
Kullback-Leibler divergence:

L= {109 DU = [ fem (%) dx < €}, k= 0,1.
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Problem set-up

D: convex set of pointwise randomized decision functions 4(+).

For observation x, we select H; with probability d(x) and Hy with
probability 1 — d(x).

False alarm: Pe(3, fo) = [ 6(x)fo(x)dx 2)
Miss: Pag(5.f1) = [ (1= 3(x)) s (ix. 3)

For equally likely hypotheses, the probability of error is given by
Pu(S, for f1) = 5 [Pr(6, fo) + Pu (5, )] - 4)
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Minimax RHT

(5R7 f(%(x)v flL(X)) = argg%l,g fof%aex]:c PE(éa f07 fl) ) (5)

where
@ Op is the robust test

o (fl, ff) are least favorable densities in F¢ = F§ x F¥.

ol PENNSTATE
@
nd Algorithms Laboratory @

10/22/2010 iPAL Group Meeting



Solution to minimax RHT

L) — (1 —€0)fo(x) fc;(x) <c’
fO ( ) - { %(1 _ €O)f1(x) ;;Exi > o (6)
L [ G-—e)fix) BE >
fl (X) - { C/(]. _ el)fO(X) ;cl)gx% < C (7)
f1 (x)
R I ®
0 Freo <1

where ¢’ and ¢” are defined such that f& and f{ are valid probability
distributions, leading to:

PR <) on(fzd)=rs
(

PR )+ en (4 < >:1_:, (0

Py, is the probability measure w.r.t fi(x).
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Underlying intuition

Choice of ¢/ and ¢”:

Consider

If any factor in the product approaches 0 or oo, L(x) is affected.

Introduce robustness by clipping the likelihood ratios to the range ¢/, ¢”.

Least favorable densities:

Choose fE(x) “as close as possible” to fi(x), and f{(x) “as close as
possible” to fo(x).
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Scalability challenge

@ RHT reduces to finding ¢’ and ¢” such that:
f1(X) ) L (fl(X) //) _ 1
Fo (fo(X T fo(x) = 1—eo
fl X) ’ ’ fl(x) ’ 1
Pl(f()(x)”)”P“(fo(x)SC) e

@ Highly nonlinear equations; require Monte Carlo methods (sample
generation).

@ Scales very poorly with dimension - computationally intractable.
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Probabilistic graphical models

@ Graph G = (V, E) is defined by a set of nodes V = {1,...,n}, and
a set of edges ¥ C V x V which connect pairs of nodes.

@ Graphical model: Random vector defined on a graph such that each
node represents one (or more) random variables, and edges reveal
conditional dependencies.

@ Underlying graph structure leads to factorization of joint probability
distribution.
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Probabilistic graphical models

@ Graph G = (V, E) is defined by a set of nodes V = {1,...,n}, and
a set of edges ¥ C V x V which connect pairs of nodes.

@ Graphical model: Random vector defined on a graph such that each
node represents one (or more) random variables, and edges reveal
conditional dependencies.

@ Underlying graph structure leads to factorization of joint probability
distribution.

@ Leverage efficient graph-based algorithms for statistical inference
and learning.

@ Trade-off between graph complexity and approximation accuracy.
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Some graph structures

Tree:

f(x) = f(@1) f(22|z1) f(zs|en) f(za]@2) f (@5 |22) f (26 |23) f (27]23).
@ Undirected acyclic graph with exactly (n — 1) edges.
@ Chow-Liu (1965): optimal tree approximation reduces to a
maximum weight spanning tree (MWST) problem.
Forest:
@ Graph with k& < (n — 1) edges.
Junction-tree:
@ Tree-structured graph with edges between clusters of nodes.

@ Clusters connected by an edge have at least one common node.
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Block-tree graphs

Disjoint clusters of nodes, with only one path connecting any two clusters.

CL23 3
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Figure: Example of a block-tree graph

Benefits:

@ Favorable complexity-performance trade-off
@ Low cost of sample generation

9 Efficient greedy algorithms to compute block-trees.
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Realizing RHT on block-tree graphs

Suppose f(x) is Gaussian with mean zero.
State-space model on the block-tree graph? is given as:

To, = Aixcr(i) + uc, , (11)
Ai = E(xcl xg'r(i))[E(xc’r(i)xg'r(i))]71 (12)
E(’U’C1ug1) = E(xcixa) - AiE(xCT(i)xgi) ) (13)

where uc; is white noise.

Computing ¢’ and ¢”:
@ For each fi(x), compute block-tree graphs Gy, using a specified
value of m (number of nodes in a cluster). Using recursive sampling,
generate sample sets Sy, k=0, 1.

Q Using Sy and &1, compute ¢’ and ¢’ by Monte Carlo methods.
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Complexity benefits

@ Assuming Gaussianity, generating a sample from f(x) is O(n?) -
inversion of an n X n matrix.
For L generated samples, total complexity is O(Ln?).

@ Using block-tree graph with cluster size m, computing block-tree
graph has complexity O(logn) + O(mn?) ~ O(mn?), while
generating samples has complexity O(rm?3) = O(m?n).

For L’ generated samples, total complexity is O(L'(mn? + m?n))
~ O(L'mn?).

@ Reduction in complexity for sparse graphical models, since m < n
and L' < L.
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Results

Probability of misclassification

0.5

J

—RHT

Figure: Error probability as a function of e for classical hypothesis testing and

RHT.
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Results
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Figure: Error probability as a function of training size, for RHT and graph
-based RHT (dense inverse covariance matrix).
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Results

Probability of misclassification
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Figure: Error probability as a function of training size, for RHT and graph
-based RHT (sparse inverse covariance matrix).
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Results
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Figure: Automatic target recognition: Misclassification probability as a function
of number training samples for graph-based RHT and RHT. Classification is
performed on real-world SAR images.
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Summary

@ Real-world classification problems: high-dimensional data, limited
training, noisy acquisition — need for robust hypothesis tests.

@ Minimax test minimizes worst-case performance of making a
decision via pursuit of least favorable densities.

@ RHT is computationally intractable for high-dimensional data.

@ Approximate densities by block-tree graphs and instantiate RHT -
significant computational benefits with tolerable loss in classification
performance.
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