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Binary hypothesis testing problem
Random vector x = (x1, . . . , xn) ∈ R

n generated from either of two
hypotheses

H0 : x ∼ g(x|H0)

H1 : x ∼ g(x|H1)

Given: Training sets T0 and T1, K samples each

Goal: Classify new sample as coming from H0 or H1

Assumptions:
Conditional densities g(x|H0) and g(x|H1) known exactly

Samples in T0 and T1 generated i.i.d. from g(x|H0) and g(x|H1)
respectively

Likelihood ratio test (LRT)

L(x) :=
g(x|H1)

g(x|H0)

H1

T
H0

τ (1)
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Need for robustness

Assumption of knowledge of true densities unrealistic:

Limited training

Training data acquired in the presence of noise

Dynamically evolving conditional densities

Secondary physical effects on signal not modeled

Robust hypothesis test1 (RHT):

Uncertainty in knowledge of true densities modeled as class of
distributions in the proximity of some nominal density

Minimum level of performance guaranteed for all models in the
vicinity of nominal density

1
Huber, 1965
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Measures of model proximity

Contamination model:

Fc
k = {f(x) : f(x) = (1− εk)fk(x) + εkh(x)}, k = 0, 1,

where fk(x) are the nominal densities, 0 ≤ ε0, ε1 ≤ 1, and h(x) is an
unknown probability density.

Total variation:

FTV
k = {f(x) : dTV (fk, f) =

∫

|fk(x)− f(x)|dx < ε}, k = 0, 1.

Kullback-Leibler divergence:

FKL
k = {f(x) : D(fk|f) =

∫

fk(x) ln

(

fk(x)

f(x)

)

dx < ε}, k = 0, 1.
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Problem set-up

D: convex set of pointwise randomized decision functions δ(·).

For observation x, we select H1 with probability δ(x) and H0 with
probability 1− δ(x).

False alarm: PF (δ, f0) =

∫

δ(x)f0(x)dx (2)

Miss: PM (δ, f1) =

∫

(1− δ(x))f1(x)dx . (3)

For equally likely hypotheses, the probability of error is given by

PE(δ, f0, f1) =
1

2
[PF (δ, f0) + PM (δ, f1)] . (4)
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Minimax RHT

(δR, f
L
0 (x), f

L
1 (x)) = argmin

δ∈D
max

f0,f1∈Fc

PE(δ, f0, f1) , (5)

where

δR is the robust test

(fL
0 , f

L
1 ) are least favorable densities in Fc = Fc

0 ×Fc
1 .
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Solution to minimax RHT

fL
0 (x) =

{

(1− ε0)f0(x)
f1(x)
f0(x)

< c′′

1
c′′
(1− ε0)f1(x)

f1(x)
f0(x)

≥ c′′
(6)

fL
1 (x) =

{

(1 − ε1)f1(x)
f1(x)
f0(x)

> c′

c′(1− ε1)f0(x)
f1(x)
f0(x)

≤ c′
(7)

δR(x) =







1
fL

1 (x)

fL

0 (x)
≥ 1

0
fL

1 (x)

fL

0 (x)
< 1

, (8)

where c′ and c′′ are defined such that fL
0 and fL

1 are valid probability
distributions, leading to:

P0

(

f1(x)

f0(x)
< c′′

)

+
1

c′′
P1

(

f1(x)

f0(x)
≥ c′′

)

=
1

1− ε0
(9)

P1

(

f1(x)

f0(x)
> c′

)

+ c′P0

(

f1(x)

f0(x)
≤ c′

)

=
1

1− ε1
. (10)

Pk is the probability measure w.r.t fk(x).
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Underlying intuition

Choice of c′ and c′′:

Consider

L(x) =
g(x|H1)

g(x|H0)
=

n
∏

i=1

g(xi|H1)

g(xi|H0)
.

If any factor in the product approaches 0 or ∞, L(x) is affected.

Introduce robustness by clipping the likelihood ratios to the range c′, c′′.

Least favorable densities:

Choose fL
0 (x) “as close as possible” to f1(x), and fL

1 (x) “as close as
possible” to f0(x).
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Scalability challenge

RHT reduces to finding c′ and c′′ such that:

P0

(

f1(x)

f0(x)
< c′′

)

+
1

c′′
P1

(

f1(x)

f0(x)
≥ c′′

)

=
1

1− ε0

P1

(

f1(x)

f0(x)
> c′

)

+ c′P0

(

f1(x)

f0(x)
≤ c′

)

=
1

1− ε1
.

Highly nonlinear equations; require Monte Carlo methods (sample
generation).

Scales very poorly with dimension - computationally intractable.
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Probabilistic graphical models

Graph G = (V,E) is defined by a set of nodes V = {1, . . . , n}, and
a set of edges E ⊂ V × V which connect pairs of nodes.

Graphical model: Random vector defined on a graph such that each
node represents one (or more) random variables, and edges reveal
conditional dependencies.

Underlying graph structure leads to factorization of joint probability
distribution.

Leverage efficient graph-based algorithms for statistical inference
and learning.

Trade-off between graph complexity and approximation accuracy.
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Some graph structures

Tree:
x1

x2

x4 x5

x3

x6 x7

f(x) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2)f(x5|x2)f(x6|x3)f(x7|x3).

Undirected acyclic graph with exactly (n− 1) edges.

Chow-Liu (1965): optimal tree approximation reduces to a
maximum weight spanning tree (MWST) problem.

Forest:

Graph with k < (n− 1) edges.

Junction-tree:

Tree-structured graph with edges between clusters of nodes.

Clusters connected by an edge have at least one common node.
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Block-tree graphs

Disjoint clusters of nodes, with only one path connecting any two clusters.

1,2,3

4,5,6 7,8,9

10,11,12 13,14,15 16,17,18

Figure: Example of a block-tree graph

Benefits:

Favorable complexity-performance trade-off

Low cost of sample generation

Efficient greedy algorithms to compute block-trees.
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Realizing RHT on block-tree graphs

Suppose f(x) is Gaussian with mean zero.
State-space model on the block-tree graph2 is given as:

xCi
= AixCΥ(i)

+ uCi
, (11)

Ai = E(xCi
xT
CΥ(i)

)[E(xCΥ(i)
xT
CΥ(i)

)]−1 (12)

E(uCi
uT
Ci
) = E(xCi

xT
Ci
)−AiE(xCΥ(i)

xT
Ci
) , (13)

where uCi
is white noise.

Computing c′ and c′′:

1 For each fk(x), compute block-tree graphs Gk using a specified
value of m (number of nodes in a cluster). Using recursive sampling,
generate sample sets Sk, k = 0, 1.

2 Using S0 and S1, compute c′ and c′′ by Monte Carlo methods.

2
Vats and Moura, 2010
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Complexity benefits

Assuming Gaussianity, generating a sample from f(x) is O(n3) -
inversion of an n× n matrix.
For L generated samples, total complexity is O(Ln3).

Using block-tree graph with cluster size m, computing block-tree
graph has complexity O(log n) +O(mn2) ≈ O(mn2), while
generating samples has complexity O(rm3) = O(m2n).
For L′ generated samples, total complexity is O(L′(mn2 +m2n))
≈ O(L′mn2).

Reduction in complexity for sparse graphical models, since m � n

and L′ � L.

10/22/2010 iPAL Group Meeting 14



Results
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Figure: Error probability as a function of ε for classical hypothesis testing and
RHT.
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Results
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Figure: Error probability as a function of training size, for RHT and graph
-based RHT (dense inverse covariance matrix).
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Graph−based RHT

Figure: Error probability as a function of training size, for RHT and graph
-based RHT (sparse inverse covariance matrix).
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Figure: Automatic target recognition: Misclassification probability as a function
of number training samples for graph-based RHT and RHT. Classification is
performed on real-world SAR images.
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Summary

Real-world classification problems: high-dimensional data, limited
training, noisy acquisition → need for robust hypothesis tests.

Minimax test minimizes worst-case performance of making a
decision via pursuit of least favorable densities.

RHT is computationally intractable for high-dimensional data.

Approximate densities by block-tree graphs and instantiate RHT -
significant computational benefits with tolerable loss in classification
performance.
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