Learning graphical models for hypothesis testing
and classification!
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@ Background and motivation
@ Graphical models: some preliminaries
© Generative learning of trees

@ Discriminative learning of trees

@ Discriminative learning of forests

@ Learning thicker graphs via boosting

@ Extension to multi-class problems
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Binary hypothesis testing problem

Random vector x = (z1,...,z,) € X™ generated from either of two
hypotheses
Hy: x~p
Hi: x~gq
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Binary hypothesis testing problem

Random vector x = (z1,...,z,) € X™ generated from either of two
hypotheses

Hy: x~p

Hi: x~gq

Given: Training sets 7, and 7,, K samples each
Goal: Classify new sample as coming from Hy or H;

Assumption: Class densities p and ¢ known exactly
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Binary hypothesis testing problem

Random vector x = (z1,...,z,) € X™ generated from either of two
hypotheses

Hy: x~p

Hi: x~gq

Given: Training sets 7, and 7,, K samples each
Goal: Classify new sample as coming from Hy or H;

Assumption: Class densities p and ¢ known exactly

Likelihood ratio test (LRT)
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What if true densities are not known a priori?

@ Estimate empiricals p. and ¢. from T, and 7 respectively
@ LRT using p. and q.
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What if true densities are not known a priori?

@ Estimate empiricals p. and ¢. from T, and 7 respectively
@ LRT using p. and q.

Problem: For high-dimensional data, need large number of samples to
get reasonable empirical estimates.
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What if true densities are not known a priori?

@ Estimate empiricals p. and ¢. from T, and 7 respectively
@ LRT using p. and q.

Problem: For high-dimensional data, need large number of samples to
get reasonable empirical estimates.

Graphical models:
@ Efficiently learn tractable models from insufficient data

@ Trade-off between consistency and generalization
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What if true densities are not known a priori?

@ Estimate empiricals p. and ¢. from T, and 7 respectively
@ LRT using p. and q.

Problem: For high-dimensional data, need large number of samples to
get reasonable empirical estimates.

Graphical models:
@ Efficiently learn tractable models from insufficient data

@ Trade-off between consistency and generalization

Generative learning: Learning models to approximate distributions.
@ Learn p from 7,, and ¢ from 7j,.
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What if true densities are not known a priori?

@ Estimate empiricals p. and ¢. from T, and 7 respectively
@ LRT using p. and q.

Problem: For high-dimensional data, need large number of samples to
get reasonable empirical estimates.

Graphical models:
@ Efficiently learn tractable models from insufficient data

@ Trade-off between consistency and generalization

Generative learning: Learning models to approximate distributions.
@ Learn p from 7,, and ¢ from 7j,.

Discriminative learning: Learning models for binary classification.

@ Learn p from T, and 7y; likewise q.
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Graphical models: Preliminaries

@ (Undirected) Graph G = (V, £) defined by a set of nodes
V =1{1,...,n}, and a set of edges £ C (‘2;)

@ Graphical model: Random vector defined on a graph such that each
node represents one (or more) random variables, and edges reveal
conditional dependencies.

@ Graph structure defines factorization of joint probability distribution.

f(x) = f(@1) f(2|z1) f(ws|z1) f(walze) f(w5]|22) f (26| 23) f (27| 03).

@ Local Markov property:

p(xilepy;) = p(xilza)), Vie V.
Such a p(x) is Markov w.r.t. G.
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Trees and forests

@ Tree: Undirected acyclic graph with exactly (n — 1) edges.

@ Forest: Contains k < (n — 1) edges — not connected.
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Trees and forests

@ Tree: Undirected acyclic graph with exactly (n — 1) edges.
@ Forest: Contains k < (n — 1) edges — not connected.

@ Factorization property:

Mo T1 55

% (1, )65
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Trees and forests
@ Tree: Undirected acyclic graph with exactly (n — 1) edges.

@ Forest: Contains k < (n — 1) edges — not connected.

@ Factorization property:

p(x) = [[ #la:) Dij (@i ;)

eV (i.])E€ pl@i)pl;)

@ Notational convention: p represents probability distribution, p
represents a graphical approximation (tree- or forest-structured).
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Trees and forests

@ Tree: Undirected acyclic graph with exactly (n — 1) edges.
@ Forest: Contains k < (n — 1) edges — not connected.

@ Factorization property:

p(x) = [[ #la:) Dij (@i ;)

i€y ()€€ plzi)p(;)
@ Notational convention: p represents probability distribution, p
represents a graphical approximation (tree- or forest-structured).

@ Projection p of p onto a tree (or forest):

p(x) == Hp(a:i) pij (i, )

i€V (jee PEOP(T)
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Generative learning of trees?

@ Optimal tree approximation of a distribution

A~

Given p, find p = argmin D(p||p)
peT

(D6l = [ o106 (52 ) ix.)

2Chow and Liu, IEEE Trans. Inf. Theory 1968 PENNSTATE
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Generative learning of trees?

@ Optimal tree approximation of a distribution

A~

Given p, find p = argmin D(p||p)
peT

(D6l = [ o106 (52 ) ix.)

@ Equivalent max-weight spanning tree (MWST) problem:

max Z I(zs;25).

£:G=(V,£) IS a tree (i.)eE

2Chow and Liu, IEEE Trans. Inf. Theory 1968
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Generative learning of trees?

@ Optimal tree approximation of a distribution

A~

Given p, find p = argmin D(p||p)
peT

(D6l = [ o106 (52 ) ix.)

@ Equivalent max-weight spanning tree (MWST) problem:

max Z I(zi;x5).

£:G=(V,£) IS a tree (i.)eE

@ Need only marginal and pairwise statistics

@ Kruskal MWST algorithm.
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J-divergence

Given distributions p and ¢,

p(x
Ho.0) = Dipll) + Dlallp) = | (00 - gy ion (29 ) ax.
Qcan q(x)
1 1T\ 1
Zexp(—J) < Pr(err) < 3 (Z) .
@ Maximize J to minimize upper bound on Pr(err).
Tree-approximate J-divergence of p,q w.r.t p,q:
- Plx
T.ama)= [ 009 = ato)tog (B ) ax
Qcxn q(x)
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Marginal consistency of p w.r.t. p:

Py (i T5) = g (@i, x5), ¥ (1, 5) € &
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Marginal consistency of p w.r.t. p:
DG (@i, m5) = pea ) (i, x5), ¥ (i,5) € &

Benefits of tree-approx. J-divergence:

@ Maximizing tree-approx. J-divergence gives good discriminative
performance (shown experimentally).

@ Marginal consistency leads to tractable optimization for p and .

@ Trees provide rich class of distributions to model high-dimensional
data.
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Discriminative learning of trees

p and g: empirical distributions from 7, and 7 respectively.

~

(p,q) = arg__max __ J(p,q;p,q).

peT5,9€T;

poq

D(B||for) —D(q][Por)
D(pl[pe)

(!

Por Pa s

Decoupling into two independent MWST problems:

10/22/2010

p

<)

D3l D(E
arg min (?llp) (gllp)

in D(Glq) — D(7q).
arg min (qllq) (?llg)
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Edge weights:

T Di.j D,

b E [1 g@ﬁj} B [1 o8 Zﬁj}
._ qi,j N ai,j

Z] T ‘h J |:1 og qu:| Ep’ivj |:10g @@] .

Algorithm 1 Discriminative trees (DT)

Given: Training sets T, and 7.
1. Estimate pairwise statistics p; J(xl, x;), Gi,j (i, ;) for all edges (i, 7).
2: Compute edge weights ¢} ; and ¢/ ; for all edges (i, ).
3: Find & = MWST (47 ,) and &g = MWST (¢} ).

4: Get p by projection of p onto &; likewise @.

5: LRT using p and ¢.
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.

Maximize joint objective over both pairs of distributions:

", q") =arg__max_ J(B,GD,9)
PET,(k) €T (k)
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.

Maximize joint objective over both pairs of distributions:

p*®,q") =arg_ max  J(.G5.9)
PET,(k) €T (k)

Useful property: J P, q;p,9) ZJ Dis i) Z w;j,
IS% ( 1,§)EEFUEG

where w;; can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.

Maximize joint objective over both pairs of distributions:

", q") =arg__max_ J(B,GD,9)
PET,(k) €T (k)

Useful property: J P, q;p,9) ZJ Dis i) Z w;j,
ey ( 1,§)EEFUEG

where w;; can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.

@ Additivity of cost function and optimality of k-step Kruskal MWST
algorithm for each k = k-step Kruskal MWST leads to optimal
forest-structured distribution.
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.

Maximize joint objective over both pairs of distributions:

", q") =arg__max_ J(B,GD,9)
PET,(k) €T (k)

Useful property: J (P, @ p, q) ZJ Di, Gi) Z Wij,
ey ( 1,§)EEFUEG
where w;; can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.

@ Additivity of cost function and optimality of k-step Kruskal MWST
algorithm for each k = k-step Kruskal MWST leads to optimal
forest-structured distribution.

@ Estimated edges sets are nested, i.e., 7;;(;@71) - ’7'5<k>, Vik<n-1.
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Discriminative learning of forests
p™* and g®): Markov on forests with at most k < (n — 1) edges.

Maximize joint objective over both pairs of distributions:

", q") =arg__max_ J(B,GD,9)
PET,(k) €T (k)

Useful property: J P, q;p,9) ZJ Dis i) Z w;j,
ey ( 1,§)EEFUEG

where w;; can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.

@ Additivity of cost function and optimality of k-step Kruskal MWST
algorithm for each k = k-step Kruskal MWST leads to optimal
forest-structured distribution.

@ Estimated edges sets are nested, i.e., 7;7(;@71) - ’7'5<k>, Vik<n-1.

@ Single run of Kruskal MWST recovers all (n — 1) pairs of edge
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Learning thicker graphs via boosting

@ Trees learn (n — 1) edges — sparse representation.

@ Desirable to learn more graph edges for better classification, if we
can also avoid overfitting.

@ Learning of junction trees known to be NP-hard.

9 Learning general graph structures is intractable.
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Learning thicker graphs via boosting

[

Trees learn (n — 1) edges — sparse representation.

©

Desirable to learn more graph edges for better classification, if we
can also avoid overfitting.

©

Learning of junction trees known to be NP-hard.

©

Learning general graph structures is intractable.

©

Use boosting to learn more than (n — 1) edges per model.
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Boosted graphical model classification

@ DT classifier used as a weak learner

@ Training sets 7, and 7; remain unchanged
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Boosted graphical model classification

@ DT classifier used as a weak learner
@ Training sets 7, and 7; remain unchanged

@ In t-th iteration, learn trees p; and q;, and classify using:

he(x) = log (@(X)) .

u(x)

@ Learn trees by minimizing weighted training error: use (Pw, Gw)
instead of (p, q).
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Boosted graphical model classification

@ DT classifier used as a weak learner
@ Training sets 7, and 7; remain unchanged

@ In t-th iteration, learn trees p; and q;, and classify using:

o= in(35)

@ Learn trees by minimizing weighted training error: use (Pw, Gw)
instead of (p, q).

@ Final boosted classifier:

Hr(x) = sgn Li: o Lo (gt 3)]
- (5]
where 5*(x) := [T/, Bi(x)*.
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Some comments

@ Boosting learns at most (n — 1) edges per iteration = maximum of
(n — 1)T edges (pairwise features)

o With suitable normalization, p*(x)/Z,(a) is a probability
distribution.

@ p*(x)/Z,(a) is Markov on a graph G = (V, &5+ ) with edge set

T
& = &
t=1

@ How to avoid overfitting?

Use cross-validation to determine optimum number of iterations T*.
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Extension to multi-class problems

@ Set of classes Z: one-versus-all strategy.

° ﬁf‘kj) (x) and ;By‘? (x) - learned forests for the binary classification
problem Class % versus Class j.

k
13§|j) ()

P (x) == log | 2  ijeT.
Pyti (%)

@ Multi-class decision function:

() () (k)
g®) (x) == arg qleaIX;fij (x).
J
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Conclusion

@ Discriminative learning optimizes an approximation to the
expectation of log-likelihood ratio

@ Superior performance in classification applications compared to
generative approaches.

@ Learned tree models can have different edge structures — removes
the restriction of Tree Augmented Naive (TAN) Bayes framework .

9 No additional computational overhead compared to existing
tree-based methods.

@ Amenable to boosting — weak learners on weighted empiricals.

@ Learning thicker graphical models in a principled manner.
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