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Binary hypothesis testing problem

Random vector x = (x1, . . . , xn) ∈ Xn generated from either of two
hypotheses

H0 : x ∼ p

H1 : x ∼ q

Given: Training sets Tp and Tq, K samples each

Goal: Classify new sample as coming from H0 or H1

Assumption: Class densities p and q known exactly

Likelihood ratio test (LRT)

L(x) :=
p(x)

q(x)

H1

T
H0

τ.
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What if true densities are not known a priori?

Estimate empiricals pe and qe from Tp and Tq respectively

LRT using pe and qe
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What if true densities are not known a priori?

Estimate empiricals pe and qe from Tp and Tq respectively

LRT using pe and qe

Problem: For high-dimensional data, need large number of samples to
get reasonable empirical estimates.

Graphical models:

Efficiently learn tractable models from insufficient data

Trade-off between consistency and generalization

Generative learning: Learning models to approximate distributions.

Learn p̂ from Tp, and q̂ from Tq.

Discriminative learning: Learning models for binary classification.

Learn p̂ from Tp and Tq; likewise q̂.

10/22/2010 iPAL Group Meeting 4



Graphical models: Preliminaries

(Undirected) Graph G = (V , E) defined by a set of nodes
V = {1, . . . , n}, and a set of edges E ⊂

(
V
2

)
.

Graphical model: Random vector defined on a graph such that each
node represents one (or more) random variables, and edges reveal
conditional dependencies.

Graph structure defines factorization of joint probability distribution.

x1

x2

x4 x5

x3

x6 x7

f(x) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2)f(x5|x2)f(x6|x3)f(x7|x3).

Local Markov property:

p(xi|xV\i) = p(xi|xN (i)), ∀ i ∈ V .

Such a p(x) is Markov w.r.t. G.
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Trees and forests

Tree: Undirected acyclic graph with exactly (n− 1) edges.

Forest: Contains k < (n− 1) edges → not connected.
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Tree: Undirected acyclic graph with exactly (n− 1) edges.
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Factorization property:

p̂(x) =
∏

i∈V

p̂(xi)
∏

(i,j)∈E

p̂i,j(xi, xj)

p̂(xi)p̂(xj)
.
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Trees and forests

Tree: Undirected acyclic graph with exactly (n− 1) edges.

Forest: Contains k < (n− 1) edges → not connected.

Factorization property:

p̂(x) =
∏

i∈V

p̂(xi)
∏

(i,j)∈E

p̂i,j(xi, xj)

p̂(xi)p̂(xj)
.

Notational convention: p represents probability distribution, p̂
represents a graphical approximation (tree- or forest-structured).

Projection p̂ of p onto a tree (or forest):

p̂(x) :=
∏

i∈V

p(xi)
∏

(i,j)∈E

pi,j(xi, xj)

p(xi)p(xj)
.
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Generative learning of trees2

Optimal tree approximation of a distribution

Given p, find p̂ = argmin
p̂∈T

D(p||p̂).

(
D(p||p̂) :=

∫
p(x) log

(
p(x)

p̂(x)

)
dx.

)

2
Chow and Liu, IEEE Trans. Inf. Theory 1968
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Generative learning of trees2

Optimal tree approximation of a distribution

Given p, find p̂ = argmin
p̂∈T

D(p||p̂).

(
D(p||p̂) :=

∫
p(x) log

(
p(x)

p̂(x)

)
dx.

)

Equivalent max-weight spanning tree (MWST) problem:

max
E:G=(V,E) is a tree

∑

(i,j)∈E

I(xi;xj).

Need only marginal and pairwise statistics

Kruskal MWST algorithm.

2
Chow and Liu, IEEE Trans. Inf. Theory 1968

10/22/2010 iPAL Group Meeting 7



J-divergence

Given distributions p and q,

J(p, q) := D(p||q) +D(q||p) =

∫

Ω⊂Xn

(p(x) − q(x)) log

(
p(x)

q(x)

)
dx.

1

4
exp(−J) ≤ Pr(err) ≤

1

2

(
J

4

)− 1
4

.

Maximize J to minimize upper bound on Pr(err).

Tree-approximate J-divergence of p̂, q̂ w.r.t p, q:

Ĵ(p̂, q̂; p, q) :=

∫

Ω⊂Xn

(p(x) − q(x)) log

(
p̂(x)

q̂(x)

)
dx.
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Marginal consistency of p̂ w.r.t. p:

p̂(i,j)(xi, xj) = p(i,j)(xi, xj), ∀ (i, j) ∈ Ep̂.
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Marginal consistency of p̂ w.r.t. p:

p̂(i,j)(xi, xj) = p(i,j)(xi, xj), ∀ (i, j) ∈ Ep̂.

Benefits of tree-approx. J-divergence:

Maximizing tree-approx. J-divergence gives good discriminative
performance (shown experimentally).

Marginal consistency leads to tractable optimization for p̂ and q̂.

Trees provide rich class of distributions to model high-dimensional
data.
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Discriminative learning of trees

p̃ and q̃: empirical distributions from Tp and Tq respectively.

(p̂, q̂) = arg max
p̂∈Tp̃,q̂∈Tq̃

Ĵ(p̂, q̂; p̃, q̃).

Decoupling into two independent MWST problems:

p̂ = arg min
p∈Tp̃

D(p̃‖p)−D(q̃‖p)

q̂ = arg min
q∈Tq̃

D(q̃‖q)−D(p̃‖q).
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Edge weights:

ψp
i,j := Ep̃i,j

[
log

p̃i,j
p̃ip̃j

]
− Eq̃i,j

[
log

p̃i,j
p̃ip̃j

]

ψq
i,j := Eq̃i,j

[
log

q̃i,j
q̃iq̃j

]
− Ep̃i,j

[
log

q̃i,j
q̃iq̃j

]
.

Algorithm 1 Discriminative trees (DT)

Given: Training sets Tp and Tq.

1: Estimate pairwise statistics p̃i,j(xi, xj), q̃i,j(xi, xj) for all edges (i, j).
2: Compute edge weights ψp

i,j and ψq
i,j for all edges (i, j).

3: Find Ep̂ = MWST(ψp
i,j) and Eq̂ = MWST(ψq

i,j).

4: Get p̂ by projection of p̃ onto Ep̂; likewise q̂.

5: LRT using p̂ and q̂.
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Discriminative learning of forests
p̂(k) and q̂(k): Markov on forests with at most k ≤ (n− 1) edges.
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i∈V

J(pi, qi) +
∑

(i,j)∈Ep̂∪Eq̂

wij ,

where wij can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.
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Useful property: Ĵ(p̂, q̂; p, q) =
∑

i∈V

J(pi, qi) +
∑

(i,j)∈Ep̂∪Eq̂

wij ,

where wij can be expressed in terms of mutual information terms and
KL-divergences involving marginal and pairwise statistics.

Additivity of cost function and optimality of k-step Kruskal MWST
algorithm for each k ⇒ k-step Kruskal MWST leads to optimal
forest-structured distribution.

Estimated edges sets are nested, i.e., Tp̃(k−1) ⊆ Tp̃(k) , ∀ k ≤ n− 1.

Single run of Kruskal MWST recovers all (n− 1) pairs of edge
substructures!
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Learning thicker graphs via boosting

Trees learn (n− 1) edges → sparse representation.

Desirable to learn more graph edges for better classification, if we
can also avoid overfitting.

Learning of junction trees known to be NP-hard.

Learning general graph structures is intractable.
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Learning thicker graphs via boosting

Trees learn (n− 1) edges → sparse representation.

Desirable to learn more graph edges for better classification, if we
can also avoid overfitting.

Learning of junction trees known to be NP-hard.

Learning general graph structures is intractable.

Use boosting to learn more than (n− 1) edges per model.
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Boosted graphical model classification

DT classifier used as a weak learner

Training sets Tp and Tq remain unchanged
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Boosted graphical model classification

DT classifier used as a weak learner

Training sets Tp and Tq remain unchanged

In t-th iteration, learn trees p̂t and q̂t, and classify using:

ht(x) := log

(
p̂t(x)

q̂t(x)

)
.

Learn trees by minimizing weighted training error: use (p̃w, q̃w)
instead of (p̃, q̃).
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Boosted graphical model classification

DT classifier used as a weak learner

Training sets Tp and Tq remain unchanged

In t-th iteration, learn trees p̂t and q̂t, and classify using:

ht(x) := log

(
p̂t(x)

q̂t(x)

)
.

Learn trees by minimizing weighted training error: use (p̃w, q̃w)
instead of (p̃, q̃).

Final boosted classifier:

HT (x) = sgn

[
T∑

t=1

αt log

(
p̂t(x)

q̂t(x)

)]

= sgn

[
log

(
p̂∗(x)

q̂∗(x)

)]
,

where p̂∗(x) :=
∏T

t=1 p̂t(x)
αt .
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Some comments

Boosting learns at most (n− 1) edges per iteration ⇒ maximum of
(n− 1)T edges (pairwise features)

With suitable normalization, p̂∗(x)/Zp(α) is a probability
distribution.

p̂∗(x)/Zp(α) is Markov on a graph G = (V , Ep̂∗) with edge set

Ep̂∗ =

T⋃

t=1

Ep̂t
.

How to avoid overfitting?

Use cross-validation to determine optimum number of iterations T ∗.
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Extension to multi-class problems

Set of classes I: one-versus-all strategy.

p̂
(k)
i|j (x) and p̂

(k)
j|i (x) - learned forests for the binary classification

problem Class i versus Class j.

f
(k)
ij (x) := log


 p̂

(k)
i|j (x)

p̂
(k)
j|i (x)


 , i, j ∈ I.

Multi-class decision function:

g(k)(x) := argmax
i∈I

∑

j∈I

f
(k)
ij (x).
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Conclusion

Discriminative learning optimizes an approximation to the
expectation of log-likelihood ratio

Superior performance in classification applications compared to
generative approaches.

Learned tree models can have different edge structures → removes
the restriction of Tree Augmented Naive (TAN) Bayes framework .

No additional computational overhead compared to existing
tree-based methods.

Amenable to boosting → weak learners on weighted empiricals.

Learning thicker graphical models in a principled manner.
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