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Histopathological Image Classification Problems
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Figure: Samples from three datasets

I Difficulties:
I Diversity of histology

features suitable for each
problem

I Presence of rich geometrical
structures

I Pathologists’ approaches:
I Look for problem-specific visual

cues:
I Shape, color, size of cells.
I Distribution of cells.
I The presence of a specific set of cells.

I Challenging question: How to (automatically) extract features?

Our main contributions

I A discriminative dictionary learning method for automatic feature
discovery.

I Two low-complexity procedures for classification and detection problems.
I Extensive experimental results on three different datasets:.

I IBL - Intraductal Breast Lesions.
I ADL - Animal Diagnostic Laboratory: Kidney, Lung and Spleen.
I TCGA - The Cancer Genome Atlas: Glioblastoma Multiforme.

Motivation and Problem Formulation

• in-class samples.
◦ complementary samples.
– VL,ε(DKSVD1,ODL2)
- - VL,ε(DDFDL)

Figure: Main idea

VL,ε(D) = {y : min
‖s‖0≤L

‖y −Ds‖22 ≤ ε}
1. Motivation

I A dictionary D sparsely represents in-class
samples (Y): min

‖s‖0≤L
‖Y− DS‖2

F small.

I But it is incapable of expressing complementary
samples (Ȳ) with small number of bases:

min
‖s̄i‖0≤L

‖Ȳ− DS̄‖2
F large

2. Problem Formulation
Optimization problem

D∗ = arg min
D

(1
N

min
‖si‖0≤L

‖Y− DS‖2
F −

ρ

N̄
min
‖s̄i‖0≤L

‖Ȳ− DS̄‖2
F

)
subject to: ‖dj‖2

2 = 1

ρ is a regularization parameter.

I Initial D could be obtained from:

(D∗,S∗) = arg min
D,S
{‖Y− DS‖2

F + λ‖S‖1} then choose L ≈ 1
N
‖S∗‖0

I D∗ can be found by alternately solving two problems:
1. fix D, find S, S̄ 2. fix S, S̄, find D

——————————————————————————————————
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Discriminative Feature-oriented Dictionary Learning (DFDL) Algorithm

Algorithm 1 Learning DFDL Dictionary for each class
INPUT: Y, Ȳ, k , ρ.

1. Choose L and initial D by ODL on Y
while not converged do
2. Fix D and update S, S̄ by solving an OMP problem;

3. Fix S, S̄, calculate: E =
1
N

YST − ρ

N̄
ȲS̄T ; F =

1
N

SST − ρ

N̄
S̄S̄T .

4. Update D from: D∗ = arg min
D

{
− 2trace(EDT ) + trace(D(F− λmin(F)I)DT )

}
end while
RETURN: D

Classification step: 1. Find sparse code: ŝ = arg mins{‖y− [D1, . . .Dc]s‖2
2 + λ‖s‖1}

2. identity(y) = arg mini ‖y− Diδi(ŝ)‖2 where δi(ŝ) is the part of ŝ associated with class i .

IBL/ADL classification procedure (proposed for RGB images)

Step 1: Learn DFDL bases
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Step 3:
Classification
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Example bases learned from different Dictionary Learning methods
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IBL and ADL: Overall accuracies and ROC curves
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Figure: Overall accuracies over number of training images
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TCGA classification procedure/results

Training (Dictionary
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DFDL for patches extracted
from ROIs (same strategy as

training phase in IBL data set)

INPUT: Labelled training images
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Table 1: CONFUSION MATRIX: TCGA

Class Not MVP MVP Method

Not VMP

76.68 23.32 WND-CHARM
96.46 3.54 LC-KSVD
92.92 7.08 NANDITA
95.57 4.43 DFDL

MVP

21.62 78.38 WND-CHARM
8.10 91.90 LC-KSVD
16.22 83.78 NANDITA
10.81 89.19 DFDL
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Figure: Microvascular proliferation (MVP) detection procedure and results
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