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What's video hashing?

@ Hashing:
e K — h(K) (1)

o If K is video, then h(K) is video hashing.

@ Specific requirements of video hashing:
o Perceptual uniqueness: Hashing values of "visually” different videos
should be different.

o Robustness: Hashing values extracted from a video clip subjected to
content-preserving distortions should be similar to the ones extracted
from the original video clip.

o Security: Randomization is needed in order to prevent adversarial
attack.

o Computational efficiency: Due to the high dimension essential of
video, time complexity of video hash function should be low.

@ Usually, there exists a tradeoff between robustness and security: The
more secure a hash function is, the less robust it is.
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Applications of video hashing

Automatic video clip identification in a video database or in
broadcasting.

Online search in a streaming video.

Authentication of the video content.

@ Content-based watermarking.
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Recent methods of video hashing
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vol. 1. Singapore, Oct. 2004, pp. 685688.
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Recent methods of video hashing
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@ S. Lee and C. D. Yoo, Robust video fingerprinting for content-based
video identification, IEEE Trans. Circuits Syst. Video Technol., vol.
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@ Sunil Lee, Chang D. Yoo, and Ton Kalker, "Robust Video
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Typical algorithm1: Hashing based on 3-D DCT!

@ Core idea: Quantize the low frequency conponent coefficients of 3-D
DCT as hashing values.
Q flowchart:
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© RBT: In order to increase security, we can introduce randomness to
the cosine frequency coefficients.

]'Baris etc, Spatio-Temporal Transform based video hashing, Trans. multimedia, 2006
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Typical algorithm1: Hashing based on 3-D DCT?

© Performance experiment:

Mean Mean
hntra- i ﬁ?ﬁ%ing
Amming
Dis ; i
| Modif. Type i7s: [ RET

Blurring 1,33 2.69 32.01 31,12
AWGN 1.86 1.13 32.02 3133
Brightness Increase 6.35 781 32.02 311
Brightness Decrease 472 7.51 32.m 31,59
Contrast Increase [AE] 112 32.04 364
Contrast Decrease (.29 0.18 32.01 3129
MPEG4 Comp. 1.12 0.7 32.01 3131
Lossy Channel 22 23 32.00 3143
Clipping in Time 10,79 11.29 31.98 31.30
Fadeover 771 6,45 32.00 31.23
Frame rotation (37) 8.1 13.7 32.00 31.09
Frame shift (3% 9.9 9.2 31.95 30,90
Frame drop (70%) 27 3.7 32.00 31.66
Fr: chge (1/4) | 275 1.95 32.05 31.53
Fr chge (4/1) 1.75 1.05 3204 31.59
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Typical algorithm1: Hashing based on 3-D DCT?3

© Performance experiment:

Mean Hamming Distances
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3Baris etc, Spatio-Temporal Transform based video hashing, Trans. multimedia, 2006
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Typical algorithm2: Hashing based on centroid of gradient

orientations®
Q@ flowchart:

Input Video (Frame sequence) Resampled Frames

@ calculate centroid of gradient orientations:
vi=[G: G,1=[58 #1.

Gz =flz+ Ly k] - flz — Ly K]
Gy = flz,y+ 1, k] — flz,y — LK)

k] =\ /62 + G2

[z, y, k] = tan~! (%) .

4Sunil Lee, Chang D. Yoo, Ton Kalker, Robust Video Fingerprinting for Content-Based Video Ident™--*"- ¢ S et oo

systems for video technology, 2008 . PENNSTATE
PAL@ @

10 / 08 / 2010 iPAL Group Meeting Tnformation Processing and Algorithms Laboratory ] ()




Typical algorithm2: Hashing based on centroid of gradient
orientations
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© performance comparisons:

P FEE

10,

: w0 d
o[ Proposed ~+ Proposed
1| Diferenter tock Luminace. | | oifrenta lock Luinance
|| o~ Gradient Orentation Hstogram 10”0 Gradient Orientation Hstogram £~~~
10" 1| ——Centroid of Gradient Magnitudes| "~ = Centroid of Gradient Magnitudes
b 2 2 w0 10’ 10 ' p,,
(®)
e
o M’sﬁ N
=G Sy
X
i < o[ Proposed N
i \t —+—Differental Bock Luminance
10°
| ——Centroid of Gradient Magnitudes 10°H| —— Centroid of Gradient Magnitudes
10° 0* w P, 10" 10° W p,
© )] PENNSTATE

e @
10/08/2010 iPAL Group Meeting o P T T 1 1




Typical algorithm3: Hashing based on Symmetric Pairwise
Boosting®

@ Core idea: Use some learning algorithm(symmetric pairwise
boosting), instead of conventional heuristically and manually derived
extraction methods(whose threshold is determined as mean or
median value of the elements), to quantize the extracted
intermediate features, so that the robustness and discriminability of
the hashing method is increased simultaneously.

@ flowchart:

Fingerprint extraction

Intermediate
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© Stepl: Extraction of Intermediate Features
block mean luminance (BML)'

A:(I,L')— ] > uGj)
(- j)eBres PENNSTATE
|1’AL @
Sunjl Lee, Chang D. Yoo, Ton Kalker, Robust vldeo fmgerprlntmgl\llalased on symmetric pairwise bc
systen’lex;/Q& £201kkology, 2009 Group Meeting Teformation Processing and Algorims Laboratory 19



Typical algorithm3: Hashing based on Symmetric Pairwise
Boosting®

@ Stepl(Cont.): or extract centroid of gradient orientations

0.y, Milis DO, )

x(r,0) = g
' Zjyesye M)

@ Step2: Use symmetric pairwise boosting to train a set of classifiers.

Taput
N pairs of sequences of intermediate features
(X5 XD y)ln = 1., N} with label 3, € (~1,+1)

Initialization

Distril L

ond{") = L.n=1,....N

Do for m =1,

1) Find the classifier hy, < H that minimizes the weighted error
¥ e
n= 2" 1 [ (0, X5 # 0]
=

where H is
oceurs: I[e] = rwise.
2) Compute weight (Confdence) of the chosen classifer

s ul' classifiers, and I[¢] = 1, if the event &

G =10g((1 = én)/em).
3) Update distribution
A" = d" exp (~cmyah (X057 X)) /70

where Z,, is a normalization factor.

Output
M gairs of fier and quanizet ((fy, Q) [ = 1..... M)
hosen M classifiers (hy. ... hy)
6Sunil Lee, Chang D. Yoo, Ton Kalker, Robust video fingerprinting based on symmetric pairwise bc - ==~ '™ ™
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Typical algorithm3: Hashing based on Symmetric Pairwise
Boosting’

© Step3: Use the classifiers to select the filters and quantizers that
apply to the extractd intermediate features to get the final hashing.

Preprocessed video clip — -
(T, frames) _ﬁmrl )
T,

Intermediate featus

@y =T+ 1) binary
fin \gerprints with
Mkbl ach

by = [Q1(fiXegrr—)) - - Qu (fur (Xer7-1))]
@ Step4: Database Search and Fingerprint Matching
by =[01(/i(Xearr-1)) - - O (i (Xesyr—1))]
T,-T+1

Dlvg,v) = > dp(®i.b)
i=l

7Sunil Lee, Chang D. Yoo, Ton Kalker, Robust video fingerprinting based on symmetric pairwise bc - =~ !
systems for video technology, 2009 .
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Typical algorithm3: Hashing based on Symmetric Pairwise

Boosting®
@ Training error for (a) matching pairs and (b) non-matching pairs
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@ performance comparisons, with intermediate features as CGO, BML

respectively.
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Typical algorithm4: Hashing based on Radial Projections
of Key Frames®

© Stepl: Radial hASH

¥y projection lines.

A< D)osit 1) sinp < 5.

P()=

Bamerey F@Y)  (Capere @) :
#0(9) - #(p) :

Dy = \/72(16('# 1(2:A+1))

9C. D. Roover, C. D. Vleeschouwer, F. Lefebvre, and B. Macq, Robust video hashing based on rad™-'
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Typical algorithm4: Hashing based on Radial Projections
of Key Frames!?

@ Step2: Key Frame Selection
@ Boundary Frame Selection

« First, extract a feature from each frame of the video
sequence.

» Second, use a metric d(k, k') to measure the distance be-
tween the features extracted at time indices & and &’. The
distance d(k, k') is expected to measure the disparity be-
tween the kth and the &’th frames.

* Third, compare the distance values d(k, k') to a threshold
T. If d(k, k") > T, the kth frame is marked as being a
boundary frame. In general, i/ = f — 1.

© Key Frame Selection

r= argiq](ui'[glkz d(k, k—1).

10
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Typical algorithm4: Hashing based on Radial Projections
of Key Frames!!

@ Performance experiment:
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Open problems

@ Whenever the brightness manipulation is taken to the extreme of
saturation (too dark, clipped to 0 or too bright, saturated to 255),
the hash function based on 3-D DCT suffers.!?

@ Quantitatively analyse the robust and secure performances of video
hashing algorithms.
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Conclusions

@ Video hashing defines a feature vector that characterizes the video
content, independently of "nonsignificant” distortions.

@ A good video hash function should be perceptual unique, robust,
secure and computational efficient.

© Video hashing technique has wide applications in video
authentication and verification.
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